tasks.json: odstraněna zmínka o knihovnách, protože nedává smysl
This commit is contained in:
parent
1097de13bb
commit
5f04de14e5
1 changed files with 6 additions and 7 deletions
13
tasks.json
13
tasks.json
|
@ -2186,7 +2186,7 @@
|
|||
"type": "text",
|
||||
"comment": "https://ksp.mff.cuni.cz/kucharky/zakladni-algoritmy/",
|
||||
"requires": [
|
||||
"kucharka-zakladni-knihovny"
|
||||
"28-Z2-4"
|
||||
],
|
||||
"title": "Grafy",
|
||||
"htmlContent": "<h4>Grafy</h4><p>S nějakými grafy jste se již možná potkali, ale tento pojem je bohužel docela přetěžovaný. Jedním jeho významem jsou „koláčové grafy“ a jiné další diagramy znázorňující nějaký poměr (ať už to jsou výsledky voleb, nebo poměr lidí, kteří sledovali v televizi Večerníček).</p><p>Další význam můžeme nalézt v analytické matematice, kde se potkáme s grafy průběhu nějakých funkcí. My však nemáme na mysli ani jedno z výše zmíněných, teď se budeme bavit o <i>kombinatorických grafech</i>.</p><p>Grafem tedy máme na mysli nějakou množinu objektů, říkejme jim <i>vrcholy</i>, a nějaké vztahy mezi nimi. Tyto vztahy nazýváme <i>hranami</i> a jsou vyjádřené dvojicemi vrcholů, mezi kterými vedou. Ukázku takového grafu vidíme třeba na následujícím obrázku.</p><figure class=\"image\"><img src=\"https://ksp.mff.cuni.cz/kucharky/zakladni-algoritmy/zakladni_algoritmy-3.png\" alt=\"Graf\"></figure><p>Jako praktickou ukázku grafu si můžeme například představit silniční síť nějakého státu: vrcholy budou města a hrany budou silnice, které mezi nimi vedou.</p><p>Občas se můžete setkat s pojmem <i>souvislý</i> graf. Ten znamená jen to, že mezi každými dvěma vrcholy existuje nějaká cesta. Pokud tomu tak není, je graf <i>nesouvislý</i> a dá se rozložit na několik menších grafů, které již souvislé jsou a říká se jim <i>komponenty souvislosti</i>.</p><p>Samotný graf poté můžeme doplnit tím, že si v každém vrcholu nebo na každé hraně budeme pamatovat nějakou hodnotu (například cenu nejlevnějšího benzínu ve městech a délku v kilometrech na silnicích). Pamatování si hodnot ve vrcholech je docela obvyklá technika a nemá speciální název, ale pokud budeme mít graf, který si pamatuje hodnoty na hranách, budeme o něm mluvit jako o <i>ohodnoceném grafu</i>.</p><p>Další možnou úpravou je, že každá hrana povede jen jedním směrem (jednosměrné silnice), takovým grafům říkáme <i>orientované</i> (pokud pak v orientovaném grafu chceme silnici oběma směry, prostě do něj přidáme dvě hrany, jednu v každém směru).</p><p>Poslední, co nám schází k praktickému použití grafů, je naučit se, jak je reprezentovat v počítači. Existuje několik možností (v popisech bude n značit počet vrcholů, m počet hran):</p><ul><li><strong>Seznam sousedů</strong> – vrcholy grafu budeme mít uložené v poli a u každého vrcholu budeme mít (spojový) seznam čísel dalších vrcholů, do kterých z aktuálního vrcholu vede hrana. Zabírá místo O(n+m) a hodí se pro řídké grafy (tedy grafy, kde je m řádově stejné jako n).</li><li><strong>Matice sousednosti</strong> – tabulka n×n, kde na souřadnicích [i,j] je jednička (nebo jiná hodnota, v případě ohodnoceného grafu), pokud z i do j vede hrana, a nula, pokud tam hrana není (u neorientovaných grafů je navíc matice symetrická – je jedno, jestli vezmeme [i,j] nebo [j,i]). Hodí se pro husté grafy, kde m~n2.</li><li><strong>Matice incidence</strong> – řádky reprezentují vrcholy, sloupce hrany. V každém sloupci jsou právě dvě jedničky – indexy vrcholů, mezi kterými hrana vede. Zabírá však O(mn) a její použití bývá dost neohrabané, takže je většinou lepší dát přednost jiné reprezentaci grafu. Je ale dobré o ní vědět.</li></ul><p>Grafy jsou velmi široké téma. Můžeme hledat jejich minimální kostry, můžeme v nich hledat nejkratší cesty či skrze ně pouštět pod tlakem vodu. Více o nich si tedy můžete přečíst v některé z našich specializovaných grafových kuchařek, které odkazujeme z našeho <a href=\"https://ksp.mff.cuni.cz/kucharky/\">kuchařkového rozcestníku</a>.</p>",
|
||||
|
@ -2213,15 +2213,14 @@
|
|||
"id": "kucharka-zakladni-knihovny",
|
||||
"type": "text",
|
||||
"comment": "https://ksp.mff.cuni.cz/kucharky/zakladni-algoritmy/",
|
||||
"requires": [
|
||||
"kucharka-zakladni-fronta-a-zasobnik"
|
||||
],
|
||||
"requires": [],
|
||||
"title": "Knihovny",
|
||||
"htmlContent": "<h4>Knihovny</h4><p>Tyto základní struktury už jsou často předpřipravené jako součást určitých <i>knihoven</i> v daném jazyce. Knihovna je většinou sbírka nějakých navzájem souvisejících funkcí, které již někdo sepsal a které si můžeme do našeho programu načíst a používat. Ukázku načtení knihoven můžete vidět například ve výše zmíněném kódu v jazyce C.</p><p>Je ale velmi důležité rozumět tomu, jak knihovní funkce vnitřně fungují. Protože jedině když budeme vědět, co je jak rychlé a efektivní, budeme schopni psát rychlé programy.</p><p>Teď již víme, jak reprezentovat nejzákladnější datové struktury v počítači, ale mohlo by se nám hodit zastavit se ještě chvíli u dalších struktur. Tentokrát je už budeme studovat trochu teoretičtěji.</p>",
|
||||
"position": [
|
||||
-844.5801773071289,
|
||||
1164.7586097717285
|
||||
]
|
||||
-573.0954666137695,
|
||||
-921.101863861084
|
||||
],
|
||||
"hidden": true
|
||||
},
|
||||
{
|
||||
"id": "kucharka-zakladni-pole",
|
||||
|
|
Reference in a new issue