Browse Source

Imported ucw-stm32lib

master
Martin Mareš 2 months ago
parent
commit
573bd96976
  1. 2
      ucw-stm32lib/README.md
  2. 485
      ucw-stm32lib/lib/dfu-bootloader.c
  3. 414
      ucw-stm32lib/lib/ds18b20.c
  4. 23
      ucw-stm32lib/lib/ds18b20.h
  5. 27
      ucw-stm32lib/lib/ext-timer.h
  6. 88
      ucw-stm32lib/lib/modbus-bootloader-proto.h
  7. 428
      ucw-stm32lib/lib/modbus-bootloader.c
  8. 44
      ucw-stm32lib/lib/modbus-proto.h
  9. 767
      ucw-stm32lib/lib/modbus.c
  10. 49
      ucw-stm32lib/lib/modbus.h
  11. 223
      ucw-stm32lib/lib/util-debug.c
  12. 103
      ucw-stm32lib/lib/util.h
  13. 173
      ucw-stm32lib/mk/bluepill.mk
  14. 13
      ucw-stm32lib/tools/Makefile
  15. 245
      ucw-stm32lib/tools/dfu-sign.c

2
ucw-stm32lib/README.md

@ -0,0 +1,2 @@
Source: https://github.com/ucw-gadgets/stm32lib
Licence: GPL3

485
ucw-stm32lib/lib/dfu-bootloader.c

@ -0,0 +1,485 @@
/*
* Generic DFU Bootloader
*
* (c) 2020 Martin Mareš <mj@ucw.cz>
*
* Based on example code from the libopencm3 project, which is
* Copyright (C) 2010 Gareth McMullin <gareth@blacksphere.co.nz>
*
* Licensed under the GNU LGPL v3 or any later version.
*/
#include "util.h"
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/cm3/systick.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/crc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/flash.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/desig.h>
#include <libopencm3/usb/usbd.h>
#include <libopencm3/usb/dfu.h>
#include <string.h>
#ifdef BOOTLOADER_DEBUG
#define DEBUG(x...) debug_printf(x)
#else
#define DEBUG(x...) do { } while (0)
#endif
// Offsets to firmware header fields (see tools/dfu-sign.c)
#define HDR_LENGTH 0x1c
#define HDR_FLASH_IN_PROGRESS 0x20
// DFU blocks should be equal to erase blocks of the flash
#define BLOCK_SIZE 1024
byte usbd_control_buffer[BLOCK_SIZE];
static enum dfu_state dfu_state = STATE_DFU_IDLE;
static uint timeout;
#define DEFAULT_TIMEOUT 5000 // ms
#define DFU_TIMEOUT 2000
static struct {
byte buf[sizeof(usbd_control_buffer)];
u16 blocknum;
u16 len;
} prog;
static char usb_serial_number[13];
enum usb_string {
STR_MANUFACTURER = 1,
STR_PRODUCT,
STR_SERIAL,
};
static const char *usb_strings[] = {
BOOTLOADER_MFG_NAME,
BOOTLOADER_PROD_NAME,
usb_serial_number,
};
const struct usb_device_descriptor dev = {
.bLength = USB_DT_DEVICE_SIZE,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = 0x0200,
.bDeviceClass = 0,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = 64,
.idVendor = BOOTLOADER_MFG_ID,
.idProduct = BOOTLOADER_PROD_ID,
.bcdDevice = BOOTLOADER_PROD_VERSION,
.iManufacturer = STR_MANUFACTURER,
.iProduct = STR_PRODUCT,
.iSerialNumber = STR_SERIAL,
.bNumConfigurations = 1,
};
const struct usb_dfu_descriptor dfu_function = {
.bLength = sizeof(struct usb_dfu_descriptor),
.bDescriptorType = DFU_FUNCTIONAL,
.bmAttributes = USB_DFU_CAN_DOWNLOAD | USB_DFU_WILL_DETACH,
.wDetachTimeout = 255,
.wTransferSize = BLOCK_SIZE,
.bcdDFUVersion = 0x0100,
};
const struct usb_interface_descriptor iface = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = 0xFE, /* Device Firmware Upgrade */
.bInterfaceSubClass = 1,
.bInterfaceProtocol = 2,
.extra = &dfu_function,
.extralen = sizeof(dfu_function),
};
const struct usb_interface ifaces[] = {{
.num_altsetting = 1,
.altsetting = &iface,
}};
const struct usb_config_descriptor config = {
.bLength = USB_DT_CONFIGURATION_SIZE,
.bDescriptorType = USB_DT_CONFIGURATION,
.wTotalLength = 0,
.bNumInterfaces = 1,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = USB_CONFIG_ATTR_DEFAULT, // bus-powered
.bMaxPower = 50, // multiplied by 2 mA
.interface = ifaces,
};
static inline u32 get_u32(u32 addr)
{
return *(u32*)addr;
}
static inline u16 get_u16(u32 addr)
{
return *(u16*)addr;
}
static bool verify_firmware(void)
{
u32 len = get_u32(BOOTLOADER_APP_START + HDR_LENGTH);
u16 flash_in_progress = get_u16(BOOTLOADER_APP_START + HDR_FLASH_IN_PROGRESS);
DEBUG("DFU: len=%u\n", (uint) len);
// FIXME: Should check if len is reasonable
crc_reset();
u32 crc = crc_calculate_block((u32 *)BOOTLOADER_APP_START, len/4);
u32 want_crc = get_u32(BOOTLOADER_APP_START + len);
DEBUG("DFU: fip=%04x crc=%08x/%08x len=%u\n", (uint) flash_in_progress, (uint) crc, (uint) want_crc, (uint) len);
if (flash_in_progress || crc != want_crc) {
DEBUG("DFU: Bad firmware\n");
return 0;
}
return 1;
}
static byte dfu_getstatus(usbd_device *usbd_dev UNUSED, u32 *bwPollTimeout)
{
switch (dfu_state) {
case STATE_DFU_DNLOAD_SYNC:
dfu_state = STATE_DFU_DNBUSY;
*bwPollTimeout = 100;
return DFU_STATUS_OK;
case STATE_DFU_MANIFEST_SYNC:
/* Device will reset when read is complete. */
dfu_state = STATE_DFU_MANIFEST;
return DFU_STATUS_OK;
case STATE_DFU_ERROR:
return DFU_STATUS_ERR_VERIFY;
default:
return DFU_STATUS_OK;
}
}
static void dfu_getstatus_complete(usbd_device *usbd_dev UNUSED, struct usb_setup_data *req UNUSED)
{
switch (dfu_state) {
case STATE_DFU_DNBUSY:
if (prog.blocknum == 0) {
// The "flash in progress" word is programmed as 0xffff first and reset later
*(u16*)(prog.buf + HDR_FLASH_IN_PROGRESS) = 0xffff;
}
u32 baseaddr = BOOTLOADER_APP_START + prog.blocknum * BLOCK_SIZE;
DEBUG("DFU: Block %u -> %08x + %u\n", prog.blocknum, (uint) baseaddr, prog.len);
flash_unlock();
flash_erase_page(baseaddr);
for (uint i = 0; i < prog.len; i += 2)
flash_program_half_word(baseaddr + i, *(u16*)(prog.buf + i));
flash_lock();
for (uint i = 0; i < prog.len; i++) {
if (*(byte *)(baseaddr + i) != prog.buf[i]) {
DEBUG("DFU: Verification failed\n");
dfu_state = STATE_DFU_ERROR;
}
}
dfu_state = STATE_DFU_DNLOAD_IDLE;
return;
case STATE_DFU_MANIFEST:
// At the very end, re-flash the "flash in progress" word
flash_unlock();
flash_program_half_word(BOOTLOADER_APP_START + 0x20, 0);
flash_lock();
if (verify_firmware())
dfu_state = STATE_DFU_MANIFEST_WAIT_RESET;
else
dfu_state = STATE_DFU_ERROR;
return;
default:
return;
}
}
static enum usbd_request_return_codes dfu_control_request(usbd_device *usbd_dev,
struct usb_setup_data *req,
byte **buf,
u16 *len,
void (**complete)(usbd_device *usbd_dev, struct usb_setup_data *req))
{
if ((req->bmRequestType & 0x7F) != 0x21)
return USBD_REQ_NOTSUPP; /* Only accept class request. */
DEBUG("DFU: Request %02x in state %d\n", req->bRequest, dfu_state);
timeout = DFU_TIMEOUT;
switch (req->bRequest) {
case DFU_DNLOAD:
if (len == NULL || *len == 0) {
dfu_state = STATE_DFU_MANIFEST_SYNC;
} else {
/* Copy download data for use on GET_STATUS. */
prog.blocknum = req->wValue;
prog.len = *len;
memcpy(prog.buf, *buf, *len);
dfu_state = STATE_DFU_DNLOAD_SYNC;
}
return USBD_REQ_HANDLED;
case DFU_CLRSTATUS:
/* Clear error and return to dfuIDLE. */
if (dfu_state == STATE_DFU_ERROR)
dfu_state = STATE_DFU_IDLE;
return USBD_REQ_HANDLED;
case DFU_ABORT:
/* Abort returns to dfuIDLE state. */
dfu_state = STATE_DFU_IDLE;
return USBD_REQ_HANDLED;
case DFU_UPLOAD:
/* Upload not supported for now. */
return USBD_REQ_NOTSUPP;
case DFU_GETSTATUS: {
u32 bwPollTimeout = 0; /* 24-bit number of milliseconds */
(*buf)[0] = dfu_getstatus(usbd_dev, &bwPollTimeout);
(*buf)[1] = bwPollTimeout & 0xFF;
(*buf)[2] = (bwPollTimeout >> 8) & 0xFF;
(*buf)[3] = (bwPollTimeout >> 16) & 0xFF;
(*buf)[4] = dfu_state;
(*buf)[5] = 0; /* iString not used here */
*len = 6;
*complete = dfu_getstatus_complete;
return USBD_REQ_HANDLED;
}
case DFU_GETSTATE:
/* Return state with no state transition. */
*buf[0] = dfu_state;
*len = 1;
return USBD_REQ_HANDLED;
}
return USBD_REQ_NOTSUPP;
}
static void dfu_set_config(usbd_device *usbd_dev, u16 wValue UNUSED)
{
usbd_register_control_callback(
usbd_dev,
USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,
USB_REQ_TYPE_TYPE | USB_REQ_TYPE_RECIPIENT,
dfu_control_request);
}
static void dfu_reset(void)
{
dfu_state = STATE_DFU_IDLE;
}
/*
* This is a modified version of rcc_clock_setup_in_hsi_out_48mhz(),
* which properly turns off the PLL before setting its parameters.
*/
static void my_rcc_clock_setup_in_hsi_out_48mhz(void)
{
/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
rcc_wait_for_osc_ready(RCC_HSI);
/* Select HSI as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_HSICLK);
// XXX: Disable PLL
rcc_osc_off(RCC_PLL);
/*
* Set prescalers for AHB, ADC, ABP1, ABP2.
* Do this before touching the PLL (TODO: why?).
*/
rcc_set_hpre(RCC_CFGR_HPRE_SYSCLK_NODIV); /*Set.48MHz Max.72MHz */
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV8); /*Set. 6MHz Max.14MHz */
rcc_set_ppre1(RCC_CFGR_PPRE1_HCLK_DIV2); /*Set.24MHz Max.36MHz */
rcc_set_ppre2(RCC_CFGR_PPRE2_HCLK_NODIV); /*Set.48MHz Max.72MHz */
rcc_set_usbpre(RCC_CFGR_USBPRE_PLL_CLK_NODIV); /*Set.48MHz Max.48MHz */
/*
* Sysclk runs with 48MHz -> 1 waitstates.
* 0WS from 0-24MHz
* 1WS from 24-48MHz
* 2WS from 48-72MHz
*/
flash_set_ws(FLASH_ACR_LATENCY_1WS);
/*
* Set the PLL multiplication factor to 12.
* 8MHz (internal) * 12 (multiplier) / 2 (PLLSRC_HSI_CLK_DIV2) = 48MHz
*/
rcc_set_pll_multiplication_factor(RCC_CFGR_PLLMUL_PLL_CLK_MUL12);
/* Select HSI/2 as PLL source. */
rcc_set_pll_source(RCC_CFGR_PLLSRC_HSI_CLK_DIV2);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_PLLCLK);
/* Set the peripheral clock frequencies used */
rcc_ahb_frequency = 48000000;
rcc_apb1_frequency = 24000000;
rcc_apb2_frequency = 48000000;
}
static void clock_plain_hsi(void)
{
// Select HSI as SYSCLK source
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_HSICLK);
// Disable PLL
rcc_osc_off(RCC_PLL);
// Set prescalers for AHB, ADC, ABP1, ABP2, USB to defaults
rcc_set_hpre(RCC_CFGR_HPRE_SYSCLK_NODIV);
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV2);
rcc_set_ppre1(RCC_CFGR_PPRE1_HCLK_NODIV);
rcc_set_ppre2(RCC_CFGR_PPRE2_HCLK_NODIV);
rcc_set_usbpre(RCC_CFGR_USBPRE_PLL_VCO_CLK_DIV3);
}
static void reset_peripherals(void)
{
// Turn off clock to all peripherals and reset them
RCC_AHBENR = 0x00000014;
RCC_APB1ENR = 0;
RCC_APB2ENR = 0;
RCC_APB1RSTR = 0x22fec9ff;
RCC_APB2RSTR = 0x0038fffd;
RCC_APB1RSTR = 0;
RCC_APB2RSTR = 0;
}
static void configure_hardware(void)
{
rcc_periph_clock_enable(RCC_GPIOA);
rcc_periph_clock_enable(RCC_GPIOB);
rcc_periph_clock_enable(RCC_GPIOC);
rcc_periph_clock_enable(RCC_USB);
rcc_periph_clock_enable(RCC_CRC);
#ifdef DEBUG_USART
#if DEBUG_USART == USART1
rcc_periph_clock_enable(RCC_USART1);
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO9);
#elif DEBUG_USART == USART2
rcc_periph_clock_enable(RCC_USART2);
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO2);
#elif DEBUG_USART == USART3
rcc_periph_clock_enable(RCC_USART3);
gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO10);
#else
#error "Unknown USART for debugging"
#endif
usart_set_baudrate(DEBUG_USART, 115200);
usart_set_databits(DEBUG_USART, 8);
usart_set_stopbits(DEBUG_USART, USART_STOPBITS_1);
usart_set_mode(DEBUG_USART, USART_MODE_TX);
usart_set_parity(DEBUG_USART, USART_PARITY_NONE);
usart_set_flow_control(DEBUG_USART, USART_FLOWCONTROL_NONE);
usart_enable(DEBUG_USART);
#endif
#ifdef DEBUG_LED_BLUEPILL
// BluePill LED
gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO13);
debug_led(1);
#endif
// Systick: set to overflow in 1 ms, will use only the overflow flag, no interrupts
systick_set_frequency(1000, CPU_CLOCK_MHZ * 1000000);
systick_clear();
systick_counter_enable();
}
#ifndef BOOTLOADER_CUSTOM_HW_INIT
static void usb_disconnect(void)
{
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO11 | GPIO12);
gpio_clear(GPIOA, GPIO11 | GPIO12);
for (uint i=0; i<100; i++) {
while (!systick_get_countflag())
;
}
}
#endif
int main(void)
{
usbd_device *usbd_dev;
reset_peripherals();
// Flash programming requires running on the internal oscillator
my_rcc_clock_setup_in_hsi_out_48mhz();
configure_hardware();
desig_get_unique_id_as_dfu(usb_serial_number);
DEBUG("DFU: Started (SN %s)\n", usb_serial_number);
#ifdef BOOTLOADER_CUSTOM_HW_INIT
custom_hw_init();
#else
usb_disconnect();
#endif
DEBUG("DFU: Ready\n");
debug_led(0);
usbd_dev = usbd_init(&st_usbfs_v1_usb_driver, &dev, &config, usb_strings, ARRAY_SIZE(usb_strings), usbd_control_buffer, sizeof(usbd_control_buffer));
usbd_register_reset_callback(usbd_dev, dfu_reset);
usbd_register_set_config_callback(usbd_dev, dfu_set_config);
restart: ;
timeout = DEFAULT_TIMEOUT;
while (timeout || (dfu_state != STATE_DFU_IDLE && dfu_state != STATE_DFU_MANIFEST_WAIT_RESET)) {
usbd_poll(usbd_dev);
if (timeout && systick_get_countflag()) {
timeout--;
// FIXME: Blink LED even after timeout
if (!(timeout & 0x3f))
debug_led_toggle();
}
}
if (!verify_firmware())
goto restart;
u32 sp = get_u32(BOOTLOADER_APP_START);
u32 pc = get_u32(BOOTLOADER_APP_START + 4);
DEBUG("DFU: Boot (sp=%08x pc=%08x)\n", (uint) sp, (uint) pc);
#ifdef DEBUG_USART
debug_flush();
#endif
debug_led(0);
reset_peripherals();
clock_plain_hsi();
/* Set vector table base address. */
SCB_VTOR = BOOTLOADER_APP_START;
/* Initialize master stack pointer. */
asm volatile("msr msp, %0"::"g" (sp));
/* Jump to application. */
((void (*)(void)) pc)();
}

414
ucw-stm32lib/lib/ds18b20.c

@ -0,0 +1,414 @@
/*
* Interface to DS18B20 Temperature Sensors
*
* (c) 2019 Martin Mareš <mj@ucw.cz>
*/
#include "util.h"
#include "ds18b20.h"
#include "ext-timer.h"
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/stm32/dma.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/rcc.h>
#include <string.h>
/*** Configuration ***/
// You should set the following parameters in config.h
// #define DS_TIMER TIM3
// #define DS_GPIO GPIOA
// #define DS_PIN GPIO7
// #define DS_DMA DMA1
// #define DS_DMA_CH 6
// #undef DS_DEBUG
// #undef DS_DEBUG2
// Maximum number of supported sensors
// #define DS_NUM_SENSORS 8
#ifdef DS_DEBUG
#define DEBUG debug_printf
#else
#define DEBUG(xxx, ...) do { } while (0)
#endif
#ifdef DS_DEBUG2
#define DEBUG2 debug_printf
#else
#define DEBUG2(xxx, ...) do { } while (0)
#endif
static volatile u32 ds_dma_buffer;
static bool ds_reset(void)
{
DEBUG2("DS18B20: Reset\n");
timer_disable_counter(DS_TIMER);
timer_one_shot_mode(DS_TIMER);
// DMA for reading pin state
ds_dma_buffer = 0xdeadbeef;
dma_set_memory_address(DS_DMA, DS_DMA_CH, (u32) &ds_dma_buffer);
dma_set_peripheral_address(DS_DMA, DS_DMA_CH, (u32) &GPIO_IDR(DS_GPIO));
dma_set_number_of_data(DS_DMA, DS_DMA_CH, 1);
dma_enable_channel(DS_DMA, DS_DMA_CH);
// CC1 is used to drive the DMA (read line state at specified time)
timer_disable_oc_output(DS_TIMER, TIM_OC1);
timer_set_oc_mode(DS_TIMER, TIM_OC1, TIM_OCM_FROZEN);
timer_set_oc_value(DS_TIMER, TIM_OC1, 560);
timer_set_dma_on_compare_event(DS_TIMER);
timer_enable_dma_cc1(DS_TIMER);
// CC2 is used to generate pulses (return line to idle state at specified time)
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_FORCE_HIGH);
timer_enable_oc_output(DS_TIMER, TIM_OC2);
timer_set_oc_value(DS_TIMER, TIM_OC2, 480);
timer_set_oc_polarity_low(DS_TIMER, TIM_OC2);
// Set timer period to the length of the whole transaction (1 ms)
timer_set_period(DS_TIMER, 999);
// XXX: We do not know why this is needed...
static bool once;
if (!once) {
for (int i=0; i<10000; i++) __asm__ volatile ("nop");
once = 1;
}
// Pull line down and start timer
timer_generate_event(DS_TIMER, TIM_EGR_UG);
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_INACTIVE);
timer_enable_counter(DS_TIMER);
// Wait until the timer expires
while (timer_is_counter_enabled(DS_TIMER))
;
// Counter is automatically disabled at the end of cycle
// Disable DMA
timer_disable_dma_cc1(DS_TIMER);
dma_disable_channel(DS_DMA, DS_DMA_CH);
DEBUG2("Init DMA: %08x [%u] (%u remains)\n",
ds_dma_buffer,
!!(ds_dma_buffer & DS_PIN),
dma_get_number_of_data(DS_DMA, DS_DMA_CH));
// Did the device respond?
if (ds_dma_buffer & DS_PIN) {
DEBUG("DS18B20: Initialization failed\n");
return 0;
} else
return 1;
}
static void ds_send_bit(bool bit)
{
timer_set_period(DS_TIMER, 99); // Each write slot takes 100 μs
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_FORCE_HIGH);
timer_set_oc_value(DS_TIMER, TIM_OC2, (bit ? 3 : 89)); // 1: 3μs pulse, 0: 89μs pulse
timer_generate_event(DS_TIMER, TIM_EGR_UG);
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_INACTIVE);
timer_enable_counter(DS_TIMER);
while (timer_is_counter_enabled(DS_TIMER))
;
}
static void ds_send_byte(byte b)
{
DEBUG2("DS write: %02x\n", b);
for (uint m = 1; m < 0x100; m <<= 1)
ds_send_bit(b & m);
}
static bool ds_recv_bit(void)
{
timer_set_period(DS_TIMER, 79); // Each read slot takes 80μs
timer_set_oc_value(DS_TIMER, TIM_OC2, 2); // Generate 2μs pulse to start read slot
timer_set_oc_value(DS_TIMER, TIM_OC1, 8); // Sample data 8μs after start of slot
timer_enable_dma_cc1(DS_TIMER);
ds_dma_buffer = 0xdeadbeef;
dma_set_number_of_data(DS_DMA, DS_DMA_CH, 1);
dma_enable_channel(DS_DMA, DS_DMA_CH);
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_FORCE_HIGH);
timer_generate_event(DS_TIMER, TIM_EGR_UG);
timer_set_oc_mode(DS_TIMER, TIM_OC2, TIM_OCM_INACTIVE);
timer_enable_counter(DS_TIMER);
while (timer_is_counter_enabled(DS_TIMER))
;
// DEBUG2("XXX %08x\n", ds_dma_buffer);
bool out = ds_dma_buffer & DS_PIN;
dma_disable_channel(DS_DMA, DS_DMA_CH);
timer_disable_dma_cc1(DS_TIMER);
return out;
}
static byte ds_recv_byte(void)
{
uint out = 0;
for (uint m = 1; m < 0x100; m <<= 1) {
if (ds_recv_bit())
out |= m;
}
DEBUG2("DS read: %02x\n", out);
return out;
}
static byte ds_buf[10];
static byte ds_crc_block(uint n)
{
/// XXX: This might be worth optimizing
uint crc = 0;
for (uint i = 0; i < n; i++) {
byte b = ds_buf[i];
for (uint j = 0; j < 8; j++) {
uint k = (b & 1) ^ (crc >> 7);
crc = (crc << 1) & 0xff;
if (k)
crc ^= 0x31;
b >>= 1;
}
}
return crc;
}
static bool ds_recv_block(uint n)
{
for (uint i = 0; i < n; i++)
ds_buf[i] = ds_recv_byte();
byte crc = ds_crc_block(n);
if (crc) {
DEBUG("DS18B20: Invalid CRC %02x\n", crc);
return 0;
}
return 1;
}
struct ds_sensor ds_sensors[DS_NUM_SENSORS];
#if DS_NUM_SENSORS == 1
static void ds_enumerate(void)
{
if (!ds_reset())
return;
ds_send_byte(0x33); // READ_ROM
if (!ds_recv_block(8))
return;
DEBUG("DS18B20: Found sensor ");
for (uint i = 0; i < 8; i++) {
DEBUG("%02x", ds_buf[i]);
ds_sensors[0].address[i] = ds_buf[i];
}
DEBUG("\n");
}
#else
static void ds_enumerate(void)
{
/*
* The enumeration algorithm roughly follows the one described in the
* Book of iButton Standards (Maxim Integrated Application Note 937).
*
* It simulates depth-first search on the trie of all device IDs.
* In each pass, it walks the trie from the root and recognizes branching nodes.
*
* The old_choice variable remembers the deepest left branch taken in the
* previous pass, new_choice is the same for the current pass.
*/
DEBUG("DS18B20: Enumerate\n");
uint num_sensors = 0;
byte *addr = ds_buf;
byte old_choice = 0;
for (;;) {
if (!ds_reset()) {
DEBUG("DS18B20: Enumeration found no sensor\n");
return;
}
ds_send_byte(0xf0); // SEARCH_ROM
byte new_choice = 0;
for (byte i=0; i<64; i++) {
bool have_one = ds_recv_bit();
bool have_zero = ds_recv_bit();
bool old_bit = addr[i/8] & (1U << (i%8));
bool new_bit;
switch (2*have_one + have_zero) {
case 3:
// This should not happen
DEBUG("DS18B20: Enumeration failed\n");
return;
case 1:
// Only 0
new_bit = 0;
break;
case 2:
// Only 1
new_bit = 1;
break;
default:
// Both
if (i == old_choice)
new_bit = 1;
else if (i > old_choice) {
new_bit = 0;
new_choice = i;
} else {
new_bit = old_bit;
if (!new_bit)
new_choice = i;
}
}
if (new_bit)
addr[i/8] |= 1U << (i%8);
else
addr[i/8] &= ~(1U << (i%8));
ds_send_bit(new_bit);
}
if (num_sensors >= DS_NUM_SENSORS) {
DEBUG("DS18B20: Too many sensors\n");
return;
}
DEBUG("DS18B20: Found sensor #%u: ", num_sensors);
for (byte i=0; i<8; i++)
DEBUG("%02x", addr[i]);
if (ds_crc_block(8)) {
DEBUG(" - invalid CRC!\n");
} else if (ds_buf[0] == 0x28) {
DEBUG("\n");
memcpy(ds_sensors[num_sensors].address, ds_buf, 8);
num_sensors++;
} else {
DEBUG(" - wrong type\n");
}
old_choice = new_choice;
if (!old_choice)
break;
}
}
#endif
void ds_init(void)
{
DEBUG("DS18B20: Init\n");
for (uint i = 0; i < DS_NUM_SENSORS; i++) {
memset(ds_sensors[i].address, 0, 8);
ds_sensors[i].current_temp = DS_TEMP_UNKNOWN;
}
dma_set_read_from_peripheral(DS_DMA, DS_DMA_CH);
dma_set_priority(DS_DMA, DS_DMA_CH, DMA_CCR_PL_VERY_HIGH);
dma_disable_peripheral_increment_mode(DS_DMA, DS_DMA_CH);
dma_enable_memory_increment_mode(DS_DMA, DS_DMA_CH);
dma_set_peripheral_size(DS_DMA, DS_DMA_CH, DMA_CCR_PSIZE_16BIT);
dma_set_memory_size(DS_DMA, DS_DMA_CH, DMA_CCR_MSIZE_16BIT);
timer_set_prescaler(DS_TIMER, CPU_CLOCK_MHZ - 1); // 1 tick = 1 μs
timer_set_mode(DS_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
timer_disable_preload(DS_TIMER);
gpio_set_mode(DS_GPIO, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, DS_PIN);
ds_enumerate();
// FIXME: Configure precision?
}
#if DS_NUM_SENSORS == 1
#define ds_current_id 0
#else
static byte ds_current_id;
#endif
static bool ds_activate(void)
{
if (!ds_reset()) {
DEBUG("DS18B20: Reset failed\n");
return false;
}
#if DS_NUM_SENSORS == 1
ds_send_byte(0xcc); // SKIP_ROM
#else
ds_send_byte(0x55); // MATCH_ROM
for (uint i = 0; i < 8; i++)
ds_send_byte(ds_sensors[ds_current_id].address[i]);
#endif
return true;
}
void ds_step(void)
{
static byte ds_running;
static byte ds_timeout;
if (!ds_running) {
// Start measurement
#if DS_NUM_SENSORS != 1
uint maxn = DS_NUM_SENSORS;
do {
if (!maxn--)
return;
ds_current_id++;
if (ds_current_id >= DS_NUM_SENSORS) {
ds_current_id = 0;
}
} while (!ds_sensors[ds_current_id].address[0]);
#endif
if (!ds_activate()) {
ds_sensors[ds_current_id].current_temp = DS_TEMP_UNKNOWN;
return;
}
ds_send_byte(0x44); // CONVERT_T
ds_running = 1;
ds_timeout = 255;
} else {
// Still running?
if (!ds_recv_bit()) {
if (!ds_timeout--) {
DEBUG("DS18B20 #%u: Timeout\n", ds_current_id);
ds_sensors[ds_current_id].current_temp = DS_TEMP_UNKNOWN;
ds_running = 0;
}
return;
}
ds_running = 0;
// Read scratch pad
if (!ds_activate())
return;
ds_send_byte(0xbe); // READ_SCRATCHPAD
if (!ds_recv_block(9)) {
ds_sensors[ds_current_id].current_temp = DS_TEMP_UNKNOWN;
return;
}
int t = (int16_t) (ds_buf[0] | (ds_buf[1] << 8));
t = t * 1000 / 16;
DEBUG("DS18B20 #%u: %d.%03d degC\n", ds_current_id, t / 1000, t % 1000);
ds_sensors[ds_current_id].current_temp = t;
}
}

23
ucw-stm32lib/lib/ds18b20.h

@ -0,0 +1,23 @@
/*
* Interface to DS18B20 Temperature Sensors
*
* (c) 2019 Martin Mareš <mj@ucw.cz>
*/
#ifndef _DS18B20_H
#define _DS18B20_H
struct ds_sensor {
byte address[8]; // All zeroes if sensor does not exist.
// Otherwise, address[0] is guaranteed to be non-zero.
int current_temp; // Temperature in m°C or DS_TEMP_UNKNOWN
};
extern struct ds_sensor ds_sensors[DS_NUM_SENSORS];
#define DS_TEMP_UNKNOWN 0x7fffffff
void ds_init(void);
void ds_step(void);
#endif

27
ucw-stm32lib/lib/ext-timer.h

@ -0,0 +1,27 @@
/*
* Timer Functions Missing from LibOpenCM3
*
* (c) 2019 Martin Mareš <mj@ucw.cz>
*/
#ifndef _EXT_TIMER_H
#define _EXT_TIMER_H
#include <libopencm3/stm32/timer.h>
static inline bool timer_is_counter_enabled(u32 timer)
{
return TIM_CR1(timer) & TIM_CR1_CEN;
}
static inline void timer_enable_dma_cc1(u32 timer)
{
TIM_DIER(timer) |= TIM_DIER_CC1DE;
}
static inline void timer_disable_dma_cc1(u32 timer)
{
TIM_DIER(timer) &= ~TIM_DIER_CC1DE;
}
#endif

88
ucw-stm32lib/lib/modbus-bootloader-proto.h

@ -0,0 +1,88 @@
/*
* MODBUS Bootloader -- Protocol
*
* (c) 2023 Martin Mareš <mj@ucw.cz>
*
* Licensed under the GNU LGPL v3 or any later version.
*/
enum bl_input_reg {
BL_INPUT_MAGIC_HI = 0xe000,
BL_INPUT_MAGIC_LO,
BL_INPUT_LOADER_VERSION,
BL_INPUT_STATUS,
// The following registers are not available in application mode
BL_INPUT_VENDOR_ID,
BL_INPUT_DEVICE_ID,
BL_INPUT_SERIAL_NUMBER, // 12 characters as in USB
BL_INPUT_BLOCK_SIZE = BL_INPUT_SERIAL_NUMBER + 6,
BL_INPUT_FLASH_SIZE, // kB
BL_INPUT_MAX,
};
enum bl_holding_reg {
BL_HOLD_COMMAND = 0xe000,
BL_HOLD_BLOCK_NUMBER,
BL_HOLD_MAX,
BL_HOLD_BLOCK_DATA = BL_HOLD_COMMAND + 0x100, // next BL_BLOCK_SIZE/2 registers contain block data
};
#define BL_MAGIC_HI 0x426f // "Bo"
#define BL_MAGIC_LO 0x6f54 // "oT"
#define BL_LOADER_VERSION 0x0001
enum bl_status {
BL_STATUS_APP = 1, // In application code, needs exit command
BL_STATUS_READY, // Boot loader ready
BL_STATUS_FLASHING, // Flashing in progress
BL_STATUS_ERROR, // Error occurred
BL_STATUS_CORRUPTED, // Corrupted firmware found
BL_STATUS_BOOTING, // About to boot current firmware
};
enum bl_command {
BL_COMMAND_BOOT = 1, // Boot current firmware
BL_COMMAND_FLASH_START, // Enter flash mode
BL_COMMAND_FLASH_END, // Quit flash mode and verify checksum
BL_COMMAND_FLASH_BLOCK, // Flash one block
BL_COMMAND_EXIT_APP, // Exit from application code to boot loader
};
static inline bool bl_app_check_input_register(u16 addr)
{
switch (addr) {
case BL_INPUT_MAGIC_HI:
case BL_INPUT_MAGIC_LO:
case BL_INPUT_LOADER_VERSION:
case BL_INPUT_STATUS:
return true;
default:
return false;
}
}
static inline u16 bl_app_get_input_register(u16 addr)
{
switch (addr) {
case BL_INPUT_MAGIC_HI:
return BL_MAGIC_HI;
case BL_INPUT_MAGIC_LO:
return BL_MAGIC_LO;
case BL_INPUT_LOADER_VERSION:
return BL_LOADER_VERSION;
case BL_INPUT_STATUS:
return BL_STATUS_APP;
default:
return 0;
}
}
static inline bool bl_app_check_holding_register(u16 addr)
{
return (addr == BL_HOLD_COMMAND);
}
static inline bool bl_app_set_holding_register(u16 addr, u16 value)
{
return (addr == BL_HOLD_COMMAND && value == BL_COMMAND_EXIT_APP);
}

428
ucw-stm32lib/lib/modbus-bootloader.c

@ -0,0 +1,428 @@
/*
* MODBUS Bootloader
*
* (c) 2023 Martin Mareš <mj@ucw.cz>
*
* Based on example code from the libopencm3 project, which is
* Copyright (C) 2010 Gareth McMullin <gareth@blacksphere.co.nz>
*
* Licensed under the GNU LGPL v3 or any later version.
*/
#include "util.h"
#include "modbus.h"
#include "modbus-bootloader-proto.h"
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/cm3/scb.h>
#include <libopencm3/cm3/systick.h>
#include <libopencm3/stm32/rcc.h>
#include <libopencm3/stm32/crc.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/flash.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/desig.h>
#include <string.h>
#ifdef BOOTLOADER_DEBUG
#define DEBUG(x...) debug_printf(x)
#else
#define DEBUG(x...) do { } while (0)
#endif
// Offsets to firmware header fields (see tools/dfu-sign.c)
#define HDR_LENGTH 0x1c
#define HDR_FLASH_IN_PROGRESS 0x20
// Block size should be equal to erase block of the flash memory
#define BLOCK_SIZE 1024
static byte current_block[BLOCK_SIZE];
static uint current_block_number;
static uint timeout;
#define DEFAULT_TIMEOUT 5000 // ms
static char usb_serial_number[13];
static uint flash_size_kb;
static uint status;
static inline u32 get_u32(u32 addr)
{
return *(u32*)addr;
}
static inline u16 get_u16(u32 addr)
{
return *(u16*)addr;
}
static bool verify_firmware(void)
{
u32 len = get_u32(BOOTLOADER_APP_START + HDR_LENGTH);
u16 flash_in_progress = get_u16(BOOTLOADER_APP_START + HDR_FLASH_IN_PROGRESS);
// Just to be sure
len = MIN(len, flash_size_kb * 1024);
crc_reset();
u32 crc = crc_calculate_block((u32 *)BOOTLOADER_APP_START, len/4);
u32 want_crc = get_u32(BOOTLOADER_APP_START + len);
DEBUG("BOOT: fip=%04x crc=%08x/%08x len=%u\n", (uint) flash_in_progress, (uint) crc, (uint) want_crc, (uint) len);
if (flash_in_progress || crc != want_crc) {
DEBUG("BOOT: Bad firmware\n");
return 0;
}
return 1;
}
static bool flash_block(void)
{
if (current_block_number >= flash_size_kb * 1024 / BLOCK_SIZE) {
DEBUG("BOOT: Bad block nr\n");
return false;
}
if (current_block_number == 0) {
// The "flash in progress" word is programmed as 0xffff first and reset later
*(u16*)(current_block + HDR_FLASH_IN_PROGRESS) = 0xffff;
}
u32 baseaddr = BOOTLOADER_APP_START + current_block_number * BLOCK_SIZE;
DEBUG("BOOT: Block %u -> %08x\n", current_block_number, (uint) baseaddr);
flash_unlock();
flash_erase_page(baseaddr);
for (uint i = 0; i < BLOCK_SIZE; i += 2)
flash_program_half_word(baseaddr + i, *(u16*)(current_block + i));
flash_lock();
for (uint i = 0; i < BLOCK_SIZE; i++) {
if (*(byte *)(baseaddr + i) != current_block[i]) {
DEBUG("BOOT: Verification failed\n");
return false;
}
}
return true;
}
static bool flash_end(void)
{
flash_unlock();
flash_program_half_word(BOOTLOADER_APP_START + 0x20, 0);
flash_lock();
return verify_firmware();
}
/*
* This is a modified version of rcc_clock_setup_in_hsi_out_48mhz(),
* which properly turns off the PLL before setting its parameters.
*/
static void my_rcc_clock_setup_in_hsi_out_48mhz(void)
{
/* Enable internal high-speed oscillator. */
rcc_osc_on(RCC_HSI);
rcc_wait_for_osc_ready(RCC_HSI);
/* Select HSI as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_HSICLK);
// XXX: Disable PLL
rcc_osc_off(RCC_PLL);
/*
* Set prescalers for AHB, ADC, ABP1, ABP2.
* Do this before touching the PLL (TODO: why?).
*/
rcc_set_hpre(RCC_CFGR_HPRE_SYSCLK_NODIV); /*Set.48MHz Max.72MHz */
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV8); /*Set. 6MHz Max.14MHz */
rcc_set_ppre1(RCC_CFGR_PPRE1_HCLK_DIV2); /*Set.24MHz Max.36MHz */
rcc_set_ppre2(RCC_CFGR_PPRE2_HCLK_NODIV); /*Set.48MHz Max.72MHz */
rcc_set_usbpre(RCC_CFGR_USBPRE_PLL_CLK_NODIV); /*Set.48MHz Max.48MHz */
/*
* Sysclk runs with 48MHz -> 1 waitstates.
* 0WS from 0-24MHz
* 1WS from 24-48MHz
* 2WS from 48-72MHz
*/
flash_set_ws(FLASH_ACR_LATENCY_1WS);
/*
* Set the PLL multiplication factor to 12.
* 8MHz (internal) * 12 (multiplier) / 2 (PLLSRC_HSI_CLK_DIV2) = 48MHz
*/
rcc_set_pll_multiplication_factor(RCC_CFGR_PLLMUL_PLL_CLK_MUL12);
/* Select HSI/2 as PLL source. */
rcc_set_pll_source(RCC_CFGR_PLLSRC_HSI_CLK_DIV2);
/* Enable PLL oscillator and wait for it to stabilize. */
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
/* Select PLL as SYSCLK source. */
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_PLLCLK);
/* Set the peripheral clock frequencies used */
rcc_ahb_frequency = 48000000;
rcc_apb1_frequency = 24000000;
rcc_apb2_frequency = 48000000;
}
static void clock_plain_hsi(void)
{
// Select HSI as SYSCLK source
rcc_set_sysclk_source(RCC_CFGR_SW_SYSCLKSEL_HSICLK);
// Disable PLL
rcc_osc_off(RCC_PLL);
// Set prescalers for AHB, ADC, ABP1, ABP2, USB to defaults
rcc_set_hpre(RCC_CFGR_HPRE_SYSCLK_NODIV);
rcc_set_adcpre(RCC_CFGR_ADCPRE_PCLK2_DIV2);
rcc_set_ppre1(RCC_CFGR_PPRE1_HCLK_NODIV);
rcc_set_ppre2(RCC_CFGR_PPRE2_HCLK_NODIV);
rcc_set_usbpre(RCC_CFGR_USBPRE_PLL_VCO_CLK_DIV3);
}
static void reset_peripherals(void)
{
// Turn off clock to all peripherals and reset them
RCC_AHBENR = 0x00000014;
RCC_APB1ENR = 0;
RCC_APB2ENR = 0;
RCC_APB1RSTR = 0x22fec9ff;
RCC_APB2RSTR = 0x0038fffd;
RCC_APB1RSTR = 0;
RCC_APB2RSTR = 0;
}
static void configure_hardware(void)
{
rcc_periph_clock_enable(RCC_GPIOA);
rcc_periph_clock_enable(RCC_GPIOB);
rcc_periph_clock_enable(RCC_GPIOC);
rcc_periph_clock_enable(RCC_CRC);
#ifdef DEBUG_USART
#if DEBUG_USART == USART1
rcc_periph_clock_enable(RCC_USART1);
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO9);
#elif DEBUG_USART == USART2
rcc_periph_clock_enable(RCC_USART2);
gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO2);
#elif DEBUG_USART == USART3
rcc_periph_clock_enable(RCC_USART3);
gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO10);
#else
#error "Unknown USART for debugging"
#endif
usart_set_baudrate(DEBUG_USART, 115200);
usart_set_databits(DEBUG_USART, 8);
usart_set_stopbits(DEBUG_USART, USART_STOPBITS_1);
usart_set_mode(DEBUG_USART, USART_MODE_TX);
usart_set_parity(DEBUG_USART, USART_PARITY_NONE);
usart_set_flow_control(DEBUG_USART, USART_FLOWCONTROL_NONE);
usart_enable(DEBUG_USART);
#endif
#ifdef DEBUG_LED_BLUEPILL
// BluePill LED
gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO13);
debug_led(1);
#endif
// Systick: set to overflow in 1 ms, will use only the overflow flag, no interrupts
systick_set_frequency(1000, CPU_CLOCK_MHZ * 1000000);
systick_clear();
systick_counter_enable();
}
/*** Modbus callbacks ***/
bool modbus_check_discrete_input(u16 addr UNUSED)
{
return false;
}
bool modbus_get_discrete_input(u16 addr UNUSED)
{
return false;
}
bool modbus_check_coil(u16 addr UNUSED)
{
return false;
}
bool modbus_get_coil(u16 addr UNUSED)
{
return false;
}
void modbus_set_coil(u16 addr UNUSED, bool value UNUSED)
{
}
bool modbus_check_input_register(u16 addr)
{
return addr >= BL_INPUT_MAGIC_HI && addr < BL_INPUT_MAX;
}
u16 modbus_get_input_register(u16 addr)
{
switch (addr) {
case BL_INPUT_MAGIC_HI:
return BL_MAGIC_HI;
case BL_INPUT_MAGIC_LO:
return BL_MAGIC_LO;
case BL_INPUT_LOADER_VERSION:
return BL_LOADER_VERSION;
case BL_INPUT_STATUS:
return status;
case BL_INPUT_VENDOR_ID:
return BOOTLOADER_VENDOR_ID;
case BL_INPUT_DEVICE_ID:
return BOOTLOADER_DEVICE_ID;
case BL_INPUT_BLOCK_SIZE:
return BLOCK_SIZE;
case BL_INPUT_FLASH_SIZE:
return flash_size_kb;
default:
return get_u16_le((byte *)usb_serial_number + 2*(addr - BL_INPUT_SERIAL_NUMBER));
}
}
bool modbus_check_holding_register(u16 addr)
{
return addr >= BL_HOLD_COMMAND && addr < BL_HOLD_MAX
|| addr >= BL_HOLD_BLOCK_DATA && addr < BL_HOLD_BLOCK_DATA + BLOCK_SIZE / 2;
}
u16 modbus_get_holding_register(u16 addr UNUSED)
{
// Reading of holding registers is not supported
return 0;
}
static uint bl_command(uint value)
{
switch (value) {
case BL_COMMAND_BOOT:
if (status == BL_STATUS_READY)
return BL_STATUS_BOOTING;
return BL_STATUS_ERROR;
case BL_COMMAND_FLASH_START:
return BL_STATUS_FLASHING;
case BL_COMMAND_FLASH_END:
if (flash_end())
return BL_STATUS_READY;
else
return BL_STATUS_CORRUPTED;
case BL_COMMAND_FLASH_BLOCK:
if (flash_block())
return BL_STATUS_FLASHING;
else
return BL_STATUS_ERROR;
default:
return BL_STATUS_ERROR;
}
}
void modbus_set_holding_register(u16 addr, u16 value)
{
switch (addr) {
case BL_HOLD_COMMAND:
status = bl_command(value);
DEBUG("BOOT: cmd=%u status=%u\n", value, status);
timeout = DEFAULT_TIMEOUT;
break;
case BL_HOLD_BLOCK_NUMBER:
current_block_number = value;
break;
default:
put_u16_le(current_block + 2*(addr - BL_HOLD_BLOCK_DATA), value);
}
}
// These should be implemented by board-specific code
// void modbus_ready_hook(void);
// void modbus_frame_start_hook(void);
// const char * const modbus_id_strings[MODBUS_ID_MAX];
static void delay_ms(uint ms)
{
for (uint j=0; j<ms; j++)
while (!systick_get_countflag())
;
}
int main(void)
{
reset_peripherals();
// Flash programming requires running on the internal oscillator
my_rcc_clock_setup_in_hsi_out_48mhz();
configure_hardware();
custom_hw_init();
desig_get_unique_id_as_dfu(usb_serial_number);
flash_size_kb = desig_get_flash_size();
// Allow ST-link to attach before we initialize the rest of hardware
for (int i=0; i<100; i++) {
debug_led_toggle();
delay_ms(20);
}
DEBUG("BOOT: Started (SN %s, fs=%u)\n", usb_serial_number, flash_size_kb);
modbus_init();
DEBUG("BOOT: Ready\n");
debug_led(0);
if (verify_firmware())
status = BL_STATUS_READY;
else
status = BL_STATUS_CORRUPTED;
timeout = DEFAULT_TIMEOUT;
byte led_counter = 0;
while (status != BL_STATUS_READY || timeout) {
modbus_loop();
if (status == BL_STATUS_BOOTING && modbus_is_idle())
break;
if (systick_get_countflag()) {
if (timeout)
timeout--;
if (!(led_counter++ & 0x3f))
debug_led_toggle();
}
}
u32 sp = get_u32(BOOTLOADER_APP_START);
u32 pc = get_u32(BOOTLOADER_APP_START + 4);
DEBUG("BOOT: Start (sp=%08x pc=%08x)\n", (uint) sp, (uint) pc);
#ifdef DEBUG_USART
debug_flush();
#endif
debug_led(0);
reset_peripherals();
clock_plain_hsi();
/* Set vector table base address. */
SCB_VTOR = BOOTLOADER_APP_START;
/* Initialize master stack pointer. */
asm volatile("msr msp, %0"::"g" (sp));
/* Jump to application. */
((void (*)(void)) pc)();
}

44
ucw-stm32lib/lib/modbus-proto.h

@ -0,0 +1,44 @@
/*
* Generic MODBUS Library for STM32: Protocol Constants
*
* (c) 2019--2022 Martin Mareš <mj@ucw.cz>
*/
enum modbus_function {
MODBUS_FUNC_READ_COILS = 0x01,
MODBUS_FUNC_READ_DISCRETE_INPUTS = 0x02,
MODBUS_FUNC_READ_HOLDING_REGISTERS = 0x03,
MODBUS_FUNC_READ_INPUT_REGISTERS = 0x04,
MODBUS_FUNC_WRITE_SINGLE_COIL = 0x05,
MODBUS_FUNC_WRITE_SINGLE_REGISTER = 0x06,
MODBUS_FUNC_READ_EXCEPTION_STATUS = 0x07,
MODBUS_FUNC_DIAGNOSTICS = 0x08,
MODBUS_FUNC_GET_COMM_EVENT_COUNTER = 0x0b,
MODBUS_FUNC_GET_COMM_EVENT_LOG = 0x0c,
MODBUS_FUNC_WRITE_MULTIPLE_COILS = 0x0f,
MODBUS_FUNC_WRITE_MULTIPLE_REGISTERS = 0x10,
MODBUS_FUNC_REPORT_SLAVE_ID = 0x11,
MODBUS_FUNC_READ_FILE_RECORD = 0x14,
MODBUS_FUNC_WRITE_FILE_RECORD = 0x15,
MODBUS_FUNC_MASK_WRITE_REGISTER = 0x16,
MODBUS_FUNC_READ_WRITE_MULTIPLE_REGISTERS = 0x17,
MODBUS_FUNC_READ_FIFO_QUEUE = 0x18,
MODBUS_FUNC_ENCAPSULATED_INTERFACE_TRANSPORT = 0x2b,
};
enum modbus_error {
MODBUS_ERR_ILLEGAL_FUNCTION = 0x01,
MODBUS_ERR_ILLEGAL_DATA_ADDRESS = 0x02,
MODBUS_ERR_ILLEGAL_DATA_VALUE = 0x03,
MODBUS_ERR_SLAVE_DEVICE_FAILURE = 0x04,
MODBUS_ERR_ACKNOWLEDGE = 0x05,
MODBUS_ERR_SLAVE_DEVICE_BUSY = 0x06,
MODBUS_ERR_MEMORY_PARITY_ERROR = 0x08,
MODBUS_ERR_GATEWAY_PATH_UNAVAILABLE = 0x0a,
MODBUS_ERR_GATEWAY_TARGET_DEVICE_FAILED = 0x0b,
};
enum modbus_encapsulated_interface_transport_type {
MODBUS_EIT_CANOPEN = 0x0d,
MODBUS_EIT_READ_DEVICE_IDENT = 0x0e,
};

767
ucw-stm32lib/lib/modbus.c

@ -0,0 +1,767 @@
/*
* Generic MODBUS Library for STM32
*
* (c) 2019--2023 Martin Mareš <mj@ucw.cz>
*/
#include "util.h"
#include "modbus.h"
#include "modbus-proto.h"
#include <stddef.h>
#include <string.h>
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/timer.h>
/*** Configuration ***/
// You should set the following parameters in config.h
// USART (pins are expected to be configured by the caller)
// #define MODBUS_USART USART2
// #define MODBUS_NVIC_USART_IRQ NVIC_USART2_IRQ
// #define MODBUS_USART_ISR usart2_isr
// GPIO pin for transmitter enable (pins is expected to be configured by the caller)
// #define MODBUS_TXEN_GPIO_PORT GPIOA
// #define MODBUS_TXEN_GPIO_PIN GPIO1
// Timer
// #define MODBUS_TIMER TIM2
// #define MODBUS_NVIC_TIMER_IRQ NVIC_TIM2_IRQ
// #define MODBUS_TIMER_ISR tim2_isr
// Slave address we are responding at
// #define MODBUS_OUR_ADDRESS 42
// Baud rate
#ifndef MODBUS_BAUD_RATE
#define MODBUS_BAUD_RATE 19200
#endif
// CPU clock frequency
// #define CPU_CLOCK_MHZ 72
// Receive buffer size (standard specifies 256 bytes, you can make it shorter if necessary)
#ifndef MODBUS_RX_BUFSIZE
#define MODBUS_RX_BUFSIZE 256
#endif
// Transmit buffer size (standard specifies 256 bytes, you can make it shorter if necessary)
#ifndef MODBUS_TX_BUFSIZE
#define MODBUS_TX_BUFSIZE 256
#endif
// Receive timeout in microseconds
#ifndef MODBUS_RX_TIMEOUT
#if MODBUS_BAUD_RATE <= 19200
// For low baud rates, the standard specifies timeout of 1.5 character times
// (1 character = start bit + 8 data bits + parity bit + stop bit = 11 bits)
#define MODBUS_RX_TIMEOUT (1000000*11*3/2/MODBUS_BAUD_RATE)
#else
// For high rates, the timeout is fixed to 750 μs
#define MODBUS_RX_TIMEOUT 750
#endif
#endif
// Inter-frame gap in microseconds
#ifndef MODBUS_RX_GAP
#if MODBUS_BAUD_RATE <= 19200
// For low baud rates, the standard specifies 3.5 character times
#define MODBUS_RX_GAP (1000000*11*7/2/MODBUS_BAUD_RATE)
#else
// For high rates, the gap is fixed to 1750 μs
#define MODBUS_RX_GAP 1750
#endif
#endif
// Debugging
// #define MODBUS_DEBUG
// #define MODBUS_DEBUG_ISR
#ifdef MODBUS_DEBUG
#define DEBUG debug_printf
#else
#define DEBUG(xxx, ...) do { } while (0)
#endif
#ifdef MODBUS_DEBUG_ISR
#define DEBUG_ISR(c) debug_putc(c)
#else
#define DEBUG_ISR(c) do { } while (0)
#endif
/*** State ***/
enum mb_state {
STATE_RX,
STATE_RX_DONE,
STATE_PROCESSING,
STATE_GAP,
STATE_TX,
STATE_TX_LAST,
STATE_TX_DONE,
};
static byte rx_buf[MODBUS_RX_BUFSIZE];
static u16 rx_size;
static byte rx_bad;
static byte state; // STATE_xxx
static byte *rx_frame;
static byte *rx_frame_end;
static byte tx_buf[MODBUS_TX_BUFSIZE];
static u16 tx_size;
static u16 tx_pos;
static byte pending_error;
static bool check_frame(void);
static void process_frame(void);
/*** Low-level layer ***/
static void rx_init(void)
{
DEBUG_ISR('<');
state = STATE_RX;
rx_size = 0;
rx_bad = 0;
usart_set_mode(MODBUS_USART, USART_MODE_RX);
usart_enable_rx_interrupt(MODBUS_USART);
modbus_ready_hook();
}
static void rx_done(void)
{
DEBUG_ISR('>');
state = STATE_RX_DONE;
usart_disable_rx_interrupt(MODBUS_USART);
}
static void tx_gap_init(void)
{
timer_set_period(MODBUS_TIMER, (MODBUS_RX_GAP > MODBUS_RX_TIMEOUT ? MODBUS_RX_GAP - MODBUS_RX_TIMEOUT : 1));
timer_generate_event(MODBUS_TIMER, TIM_EGR_UG);
timer_enable_counter(MODBUS_TIMER);
}
static void tx_init(void)
{
DEBUG_ISR('[');
state = STATE_TX;
tx_pos = 0;
gpio_set(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
usart_set_mode(MODBUS_USART, USART_MODE_TX);
usart_enable_tx_interrupt(MODBUS_USART);
}
static void tx_done(void)
{
state = STATE_TX_DONE;
// usart_disable_tx_interrupt(MODBUS_USART); // Already done by irq handler
gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
}
void modbus_init(void)
{
DEBUG("MODBUS: Init\n");
timer_set_prescaler(MODBUS_TIMER, CPU_CLOCK_MHZ-1); // 1 tick = 1 μs
timer_set_mode(MODBUS_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_DOWN);
timer_update_on_overflow(MODBUS_TIMER);
timer_disable_preload(MODBUS_TIMER);
timer_one_shot_mode(MODBUS_TIMER);
timer_enable_irq(MODBUS_TIMER, TIM_DIER_UIE);
nvic_enable_irq(MODBUS_NVIC_TIMER_IRQ);
gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
usart_set_baudrate(MODBUS_USART, MODBUS_BAUD_RATE);
usart_set_databits(MODBUS_USART, 9);
usart_set_stopbits(MODBUS_USART, USART_STOPBITS_1);
usart_set_parity(MODBUS_USART, USART_PARITY_EVEN);
usart_set_flow_control(MODBUS_USART, USART_FLOWCONTROL_NONE);
rx_init();
nvic_enable_irq(MODBUS_NVIC_USART_IRQ);
usart_enable(MODBUS_USART);
}
void MODBUS_USART_ISR(void)
{
u32 status = USART_SR(MODBUS_USART);
if (status & USART_SR_RXNE) {
uint ch = usart_recv(MODBUS_USART);
if (state == STATE_RX) {
if (status & (USART_SR_FE | USART_SR_ORE | USART_SR_NE)) {
DEBUG_ISR('!');
rx_bad = 1;
} else if (rx_size < MODBUS_RX_BUFSIZE) {
DEBUG_ISR('.');
if (!rx_size)
modbus_frame_start_hook();
rx_buf[rx_size++] = ch;
} else {
// Frame too long
DEBUG_ISR('#');
rx_bad = 2;
}
timer_set_period(MODBUS_TIMER, MODBUS_RX_TIMEOUT);
timer_generate_event(MODBUS_TIMER, TIM_EGR_UG);
timer_enable_counter(MODBUS_TIMER);
}
}
if (state == STATE_TX) {
if (status & USART_SR_TXE) {
if (tx_pos < tx_size) {
usart_send(MODBUS_USART, tx_buf[tx_pos++]);
DEBUG_ISR(':');
} else {
// The transmitter is double-buffered, so at this moment, it is transmitting
// the last byte of the frame. Wait until transfer is completed.
usart_disable_tx_interrupt(MODBUS_USART);
USART_CR1(MODBUS_USART) |= USART_CR1_TCIE;
state = STATE_TX_LAST;
DEBUG_ISR(']');
}
}
} else if (state == STATE_TX_LAST) {
if (status & USART_SR_TC) {
// Transfer of the last byte is complete. Release the bus.
USART_CR1(MODBUS_USART) &= ~USART_CR1_TCIE;
tx_done();
rx_init();
}
}
}
void MODBUS_TIMER_ISR(void)
{
if (TIM_SR(MODBUS_TIMER) & TIM_SR_UIF) {
TIM_SR(MODBUS_TIMER) &= ~TIM_SR_UIF;
if (state == STATE_RX)
rx_done();
else if (state == STATE_GAP)
tx_init();
}
}
void modbus_loop(void)
{
if (state != STATE_RX_DONE)
return;
state = STATE_PROCESSING;
if (!check_frame()) {
rx_init();
return;
}
DEBUG("MODBUS: < dest=%02x func=%02x len=%u\n", rx_buf[0], rx_buf[1], rx_size);
if (rx_buf[0] == MODBUS_OUR_ADDRESS) {
// Frame addressed to us: process and reply
tx_gap_init();
process_frame();
DEBUG("MODBUS: > status=%02x len=%u\n", tx_buf[1], tx_size);
CM_ATOMIC_BLOCK() {
if (TIM_CR1(MODBUS_TIMER) & TIM_CR1_CEN) {
// The timer is still running, so let it handle the start of transmission.
// Even if it expires just now, the interrupt is deferred.
state = STATE_GAP;
}
}
if (state == STATE_PROCESSING) {
// Interrupt already expired, so fire up transmission from here.
tx_init();
}
} else if (rx_buf[0] == 0x00) {
// Broadcast frame: process, but do not reply
process_frame();
rx_init();
} else {
// Somebody else's frame: discard
rx_init();
}
}
/** CRC ***/
static const byte crc_hi[] = {
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40
};
static const byte crc_lo[] = {
0x00, 0xc0, 0xc1, 0x01, 0xc3, 0x03, 0x02, 0xc2, 0xc6, 0x06,
0x07, 0xc7, 0x05, 0xc5, 0xc4, 0x04, 0xcc, 0x0c, 0x0d, 0xcd,
0x0f, 0xcf, 0xce, 0x0e, 0x0a, 0xca, 0xcb, 0x0b, 0xc9, 0x09,
0x08, 0xc8, 0xd8, 0x18, 0x19, 0xd9, 0x1b, 0xdb, 0xda, 0x1a,
0x1e, 0xde, 0xdf, 0x1f, 0xdd, 0x1d, 0x1c, 0xdc, 0x14, 0xd4,
0xd5, 0x15, 0xd7, 0x17, 0x16, 0xd6, 0xd2, 0x12, 0x13, 0xd3,
0x11, 0xd1, 0xd0, 0x10, 0xf0, 0x30, 0x31, 0xf1, 0x33, 0xf3,
0xf2, 0x32, 0x36, 0xf6, 0xf7, 0x37, 0xf5, 0x35, 0x34, 0xf4,
0x3c, 0xfc, 0xfd, 0x3d, 0xff, 0x3f, 0x3e, 0xfe, 0xfa, 0x3a,
0x3b, 0xfb, 0x39, 0xf9, 0xf8, 0x38, 0x28, 0xe8, 0xe9, 0x29,
0xeb, 0x2b, 0x2a, 0xea, 0xee, 0x2e, 0x2f, 0xef, 0x2d, 0xed,
0xec, 0x2c, 0xe4, 0x24, 0x25, 0xe5, 0x27, 0xe7, 0xe6, 0x26,
0x22, 0xe2, 0xe3, 0x23, 0xe1, 0x21, 0x20, 0xe0, 0xa0, 0x60,
0x61, 0xa1, 0x63, 0xa3, 0xa2, 0x62, 0x66, 0xa6, 0xa7, 0x67,
0xa5, 0x65, 0x64, 0xa4, 0x6c, 0xac, 0xad, 0x6d, 0xaf, 0x6f,
0x6e, 0xae, 0xaa, 0x6a, 0x6b, 0xab, 0x69, 0xa9, 0xa8, 0x68,
0x78, 0xb8, 0xb9, 0x79, 0xbb, 0x7b, 0x7a, 0xba, 0xbe, 0x7e,
0x7f, 0xbf, 0x7d, 0xbd, 0xbc, 0x7c, 0xb4, 0x74, 0x75, 0xb5,
0x77, 0xb7, 0xb6, 0x76, 0x72, 0xb2, 0xb3, 0x73, 0xb1, 0x71,
0x70, 0xb0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9c, 0x5c,
0x5d, 0x9d, 0x5f, 0x9f, 0x9e, 0x5e, 0x5a, 0x9a, 0x9b, 0x5b,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4b, 0x8b,
0x8a, 0x4a, 0x4e, 0x8e, 0x8f, 0x4f, 0x8d, 0x4d, 0x4c, 0x8c,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
};
static u16 crc16(byte *buf, u16 len)
{
byte hi = 0xff, lo = 0xff;
while (len--) {
byte i = hi ^ *buf++;
hi = lo ^ crc_hi[i];
lo = crc_lo[i];
}
return (hi << 8 | lo);
}
/*** High-level layer ***/
static bool check_frame(void)
{
if (rx_bad) {
// FIXME: Error counters?
DEBUG("MODBUS: RX bad\n");
return false;
}
if (rx_size < 4) {
// FIXME: Error counters?
DEBUG("MODBUS: RX undersize\n");
return false;
}
u16 crc = crc16(rx_buf, rx_size - 2);
u16 rx_crc = (rx_buf[rx_size-2] << 8) | rx_buf[rx_size-1];
if (crc != rx_crc) {
// FIXME: Error counters?
DEBUG("MODBUS: Bad CRC\n");
return false;
}
rx_frame = rx_buf + 1;
rx_frame_end = rx_frame + rx_size - 2;
return true;
}
static uint read_remains(void)
{
return rx_frame_end - rx_frame;
}
static byte read_byte(void)
{
return *rx_frame++;
}
static u16 read_u16(void)
{
byte hi = *rx_frame++;
byte lo = *rx_frame++;
return (hi << 8) | lo;
}
static void write_byte(byte v)
{
tx_buf[tx_size++] = v;
}
static void write_u16(u16 v)
{
write_byte(v >> 8);
write_byte(v);
}
static bool body_fits(uint body_len)
{
// body_len excludes slave address, function code, and CRC
return (2 + body_len + 2 <= MODBUS_TX_BUFSIZE);
}
static void report_error(byte code)
{
// Discard the partially constructed body of the reply and rewrite the header
tx_buf[1] |= 0x80;
tx_buf[2] = code;
tx_size = 3;
}
static void func_read_bits(bool coils)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
uint bytes = (count+7) / 8;
if (!body_fits(1 + bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!(coils ? modbus_check_coil : modbus_check_discrete_input)(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
write_byte(bytes);
for (u16 i = 0; i < bytes; i++) {
byte b = 0;
for (byte j = 0; j < 8 && 8*i + j < count; j++) {
uint addr = start + 8*i + j;
if ((coils ? modbus_get_coil : modbus_get_discrete_input)(addr))
b |= 1 << j;
}
write_byte(b);
}
}
static void func_read_registers(byte holding)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
uint bytes = 2*count;
if (!body_fits(1 + bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!(holding ? modbus_check_holding_register : modbus_check_input_register)(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
// FIXME: Reporting of slave failures?
write_byte(bytes);
for (u16 i = 0; i < count; i++)
write_u16((holding ? modbus_get_holding_register : modbus_get_input_register)(start + i));
}
static void func_write_single_coil(void)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 value = read_u16();
if (!modbus_check_coil(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
if (value != 0x0000 && value != 0xff00)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
modbus_set_coil(addr, value);
write_u16(addr);
write_u16(value);
}
static void func_write_single_register(void)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 value = read_u16();
if (!modbus_check_holding_register(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
modbus_set_holding_register(addr, value);
write_u16(addr);
write_u16(value);
}
static void func_write_multiple_coils(void)
{
if (read_remains() < 5)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
byte bytes = read_byte();
if (read_remains() < bytes || bytes != (count+7) / 8)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!modbus_check_coil(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < count; i++)
modbus_set_coil(start + i, rx_frame[i/8] & (1U << (i%8)));
write_u16(start);
write_u16(count);
}
static void func_write_multiple_registers(void)
{
if (read_remains() < 5)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
byte bytes = read_byte();
if (read_remains() < bytes || bytes != 2*count)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!modbus_check_holding_register(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < count; i++)
modbus_set_holding_register(start + i, read_u16());
write_u16(start);
write_u16(count);
}
static void func_mask_write_register(void)
{
if (read_remains() < 6)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 and_mask = read_u16();
u16 or_mask = read_u16();
if (!modbus_check_holding_register(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
u16 reg = modbus_get_holding_register(addr);
reg = (reg & and_mask) | (or_mask & ~and_mask);
modbus_set_holding_register(addr, reg);
write_u16(addr);
write_u16(and_mask);
write_u16(or_mask);
}
static void func_read_write_multiple_registers(void)
{
if (read_remains() < 9)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 read_start = read_u16();
u16 read_count = read_u16();
u16 write_start = read_u16();
u16 write_count = read_u16();
byte write_bytes = read_byte();
if (read_remains() < write_bytes || write_bytes != 2*write_count)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < read_count; i++)
if (!modbus_check_holding_register(read_start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < write_count; i++)
if (!modbus_check_holding_register(write_start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
byte read_bytes = 2*write_count;
if (!body_fits(1 + read_bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < write_count; i++)
modbus_set_holding_register(write_start + i, read_u16());
write_byte(read_bytes);
for (u16 i = 0; i < read_count; i++)
modbus_get_holding_register(read_start + i);
}
static void func_encapsulated_interface_transport(void)
{
if (read_remains() < 3 ||
read_byte() != MODBUS_EIT_READ_DEVICE_IDENT)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
byte action = read_byte();
byte id = read_byte();
byte range_min, range_max;
switch (action) {
case 1:
// Streaming access to basic identification
range_min = MODBUS_ID_VENDOR_NAME;
range_max = MODBUS_ID_MAJOR_MINOR_REVISION;
break;
case 2:
// Streaming access to regular identification
range_min = MODBUS_ID_VENDOR_URL;
range_max = MODBUS_ID_USER_APP_NAME;
break;
case 4:
// Individual access
if (id >= MODBUS_ID_MAX || !modbus_id_strings[id])
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
range_min = range_max = id;
break;
default:
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
}
if (action != 4) {
if (id < range_min || id > range_max)
id = range_min;
}
write_byte(0x0e); // Repeat a part of the request
write_byte(action);
// Conformity level
if (modbus_id_strings[MODBUS_ID_VENDOR_URL] ||
modbus_id_strings[MODBUS_ID_PRODUCT_NAME] ||
modbus_id_strings[MODBUS_ID_USER_APP_NAME])
write_byte(0x82); // Regular identification, both stream and individual access supported
else
write_byte(0x81); // Basic identification only
u16 more_follows_at = tx_size;
write_byte(0); // More follows: so far not
write_byte(0); // Next object ID: so far none
write_byte(0); // Number of objects
for (id = range_min; id <= range_max; id++) {
if (modbus_id_strings[id]) {
byte len = strlen(modbus_id_strings[id]);
byte remains = MODBUS_TX_BUFSIZE - 4 - tx_size; // 2 for CRC, 2 for object header
if (len > remains) {
// If it is the only object, cut it
if (!tx_buf[more_follows_at + 2])
len = remains;
else {
// More follows, report the next ID
tx_buf[more_follows_at] = 0xff;
tx_buf[more_follows_at + 1] = id;
break;
}
}
tx_buf[more_follows_at + 2] ++;
write_byte(id);
write_byte(len);
memcpy(tx_buf + tx_size, modbus_id_strings[id], len);
tx_size += len;
}
}
}
static void process_frame(void)
{
byte func = read_byte();
// Prepare reply frame
tx_buf[0] = MODBUS_OUR_ADDRESS;
tx_buf[1] = rx_buf[1];
tx_size = 2;
pending_error = 0;
switch (func) {
case MODBUS_FUNC_READ_COILS:
func_read_bits(true);
break;
case MODBUS_FUNC_READ_DISCRETE_INPUTS:
func_read_bits(false);
break;
case MODBUS_FUNC_READ_HOLDING_REGISTERS:
func_read_registers(true);
break;
case MODBUS_FUNC_READ_INPUT_REGISTERS:
func_read_registers(false);
break;
case MODBUS_FUNC_WRITE_SINGLE_COIL:
func_write_single_coil();
break;
case MODBUS_FUNC_WRITE_SINGLE_REGISTER:
func_write_single_register();
break;
case MODBUS_FUNC_WRITE_MULTIPLE_COILS:
func_write_multiple_coils();
break;
case MODBUS_FUNC_WRITE_MULTIPLE_REGISTERS:
func_write_multiple_registers();
break;
case MODBUS_FUNC_MASK_WRITE_REGISTER:
func_mask_write_register();
break;
case MODBUS_FUNC_READ_WRITE_MULTIPLE_REGISTERS:
func_read_write_multiple_registers();
break;
case MODBUS_FUNC_ENCAPSULATED_INTERFACE_TRANSPORT:
func_encapsulated_interface_transport();
break;
default:
report_error(MODBUS_ERR_ILLEGAL_FUNCTION);
}
// Is there a deferred error pending?
if (pending_error)
report_error(pending_error);
// Finish reply frame
write_u16(crc16(tx_buf, tx_size));
}
void modbus_slave_error(void)
{
pending_error = MODBUS_ERR_SLAVE_DEVICE_FAILURE;
}
bool modbus_is_idle(void)
{
return state == STATE_RX && !rx_size;
}

49
ucw-stm32lib/lib/modbus.h

@ -0,0 +1,49 @@
/*
* Generic MODBUS Library for STM32
*
* (c) 2019--2023 Martin Mareš <mj@ucw.cz>
*/
#ifndef _MODBUS_H
#define _MODBUS_H
void modbus_init(void);
void modbus_loop(void);
// If a call-back wants to signal a slave error in the reply
void modbus_slave_error(void);
bool modbus_is_idle(void);
// Callbacks
bool modbus_check_discrete_input(u16 addr);
bool modbus_get_discrete_input(u16 addr);
bool modbus_check_coil(u16 addr);
bool modbus_get_coil(u16 addr);
void modbus_set_coil(u16 addr, bool value);
bool modbus_check_input_register(u16 addr);
u16 modbus_get_input_register(u16 addr);
bool modbus_check_holding_register(u16 addr);
u16 modbus_get_holding_register(u16 addr);
void modbus_set_holding_register(u16 addr, u16 value);
void modbus_ready_hook(void);
void modbus_frame_start_hook(void);
enum modbus_id_object {
MODBUS_ID_VENDOR_NAME, // first three must be always defined
MODBUS_ID_PRODUCT_CODE,
MODBUS_ID_MAJOR_MINOR_REVISION,
MODBUS_ID_VENDOR_URL, // the rest may be NULL
MODBUS_ID_PRODUCT_NAME,
MODBUS_ID_USER_APP_NAME,
MODBUS_ID_MAX,
};
extern const char * const modbus_id_strings[MODBUS_ID_MAX];
#endif

223
ucw-stm32lib/lib/util-debug.c

@ -0,0 +1,223 @@
/*
* Debugging Utilities for STM32
*
* (c) 2018--2019 Martin Mareš <mj@ucw.cz>
*/
#include "util.h"
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/usart.h>
#include <stdarg.h>
#include <string.h>
/*** Configuration ***/
// You should set the following parameters in config.h
// Use the semi-hosting interface for debugging messages
// #define DEBUG_SEMIHOSTING
// Use this USART for debugging messages
// #define DEBUG_USART USART1
// Use this LED for debugging
#ifdef DEBUG_LED_BLUEPILL
#define DEBUG_LED_GPIO GPIOC
#define DEBUG_LED_PIN GPIO13
#define DEBUG_LED_INVERSE
#endif
/*** Implementation ***/
#ifdef DEBUG_SEMIHOSTING
void semi_put_char(char c)
{
// This is tricky, we need to work around GCC bugs
volatile char cc = c;
asm volatile (
"mov r0, #0x03\n" /* SYS_WRITEC */
"mov r1, %[msg]\n"
"bkpt #0xAB\n"
:
: [msg] "r" (&cc)
: "r0", "r1"
);
}
void semi_write_string(char *c)
{
asm volatile (
"mov r0, #0x04\n" /* SYS_WRITE0 */
"mov r1, %[msg]\n"
"bkpt #0xAB\n"
:
: [msg] "r" (c)
: "r0", "r1"
);
}
#endif
void debug_putc(int c)
{
#ifdef DEBUG_SEMIHOSTING
static char debug_buf[128];
static int debug_i;
debug_buf[debug_i++] = c;
if (c == '\n' || debug_i >= sizeof(debug_buf) - 1) {
debug_buf[debug_i] = 0;
semi_write_string(debug_buf);
debug_i = 0;
}
#endif
#ifdef DEBUG_USART
if (c == '\n')
usart_send_blocking(DEBUG_USART, '\r');
usart_send_blocking(DEBUG_USART, c);
#endif
}
void debug_flush(void)
{
#ifdef DEBUG_USART
while (!usart_get_flag(DEBUG_USART, USART_FLAG_TC))
;
#endif
}
void debug_puts(const char *s)
{
while (*s)
debug_putc(*s++);
}
enum printf_flags {
PF_ZERO_PAD = 1,
PF_SIGNED = 2,
PF_NEGATIVE = 4,
PF_UPPERCASE = 8,
PF_LEFT = 16,
};
static void printf_string(const char *s, uint width, uint flags)
{
uint len = strlen(s);
uint pad = (len < width) ? width - len : 0;
char pad_char = (flags & PF_ZERO_PAD) ? '0' : ' ';
if (flags & PF_LEFT)
debug_puts(s);
while (pad--)
debug_putc(pad_char);
if (!(flags & PF_LEFT))
debug_puts(s);
}
static void printf_number(uint i, uint width, uint flags, uint base)
{
char buf[16];
char *w = buf + sizeof(buf);
if (flags & PF_SIGNED) {
if ((int) i < 0) {
i = - (int) i;
flags |= PF_NEGATIVE;
}
}
*--w = 0;
do {
uint digit = i % base;
if (digit < 10)
*--w = '0' + digit;
else
*--w = ((flags & PF_UPPERCASE) ? 'A' : 'a') + digit - 10;
i /= base;
}
while (i);
if (flags & PF_NEGATIVE)
*--w = '-';
printf_string(w, width, flags);
}
void debug_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
while (*fmt) {
int c = *fmt++;
if (c != '%') {
debug_putc(c);
continue;
}
uint width = 0;
uint flags = 0;
if (*fmt == '-') {
fmt++;
flags |= PF_LEFT;
}
if (*fmt == '0') {
fmt++;
flags |= PF_ZERO_PAD;
}
while (*fmt >= '0' && *fmt <= '9')
width = 10*width + *fmt++ - '0';
c = *fmt++;
switch (c) {
case 'c':
debug_putc(va_arg(args, int));
break;
case 'd':
printf_number(va_arg(args, int), width, flags | PF_SIGNED, 10);
break;
case 'u':
printf_number(va_arg(args, int), width, flags, 10);
break;
case 'X':
flags |= PF_UPPERCASE;
// fall-thru
case 'x':
printf_number(va_arg(args, int), width, flags, 16);
break;
case 's':
printf_string(va_arg(args, char *), width, flags);
break;
default:
debug_putc(c);
continue;
}
}
va_end(args);
}
void debug_led(bool light)
{
#ifdef DEBUG_LED_GPIO
#ifdef DEBUG_LED_INVERSE
light = !light;
#endif
if (light)
gpio_set(DEBUG_LED_GPIO, DEBUG_LED_PIN);
else
gpio_clear(DEBUG_LED_GPIO, DEBUG_LED_PIN);
#endif
}
void debug_led_toggle(void)
{
#ifdef DEBUG_LED_GPIO
gpio_toggle(DEBUG_LED_GPIO, DEBUG_LED_PIN);
#endif
}

103
ucw-stm32lib/lib/util.h

@ -0,0 +1,103 @@
/*
* General Utility Library for STM32
*
* (c) 2018--2019 Martin Mareš <mj@ucw.cz>
*/
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "config.h"
// Types
typedef unsigned int uint;
typedef uint8_t byte;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
// Macros
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define CLAMP(x,min,max) ({ typeof(x) _t=x; (_t < min) ? min : (_t > max) ? max : _t; })
#define ARRAY_SIZE(ary) (sizeof(ary)/sizeof((ary)[0]))
#define UNUSED __attribute__((unused))
// Unaligned access to data
static inline uint get_u16_le(byte *p)
{
return (p[1] << 8) | p[0];
}
static inline uint get_u16_be(byte *p)
{
return (p[0] << 8) | p[1];
}
static inline uint get_u32_le(byte *p)
{
return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
}
static inline uint get_u32_be(byte *p)
{
return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
}
static inline void put_u16_le(byte *p, u16 x)
{
p[0] = x;
p[1] = x >> 8;
}
static inline void put_u16_be(byte *p, u16 x)
{
p[0] = x >> 8;
p[1] = x;
}
static inline void put_u32_be(byte *p, u32 x)
{
p[0] = x >> 24;
p[1] = (x >> 16) & 0xff;
p[2] = (x >> 8) & 0xff;
p[3] = x & 0xff;
}
static inline void put_u32_le(byte *p, u32 x)
{
p[3] = x >> 24;
p[2] = (x >> 16) & 0xff;
p[1] = (x >> 8) & 0xff;
p[0] = x & 0xff;
}
// CPU instructions not covered by libopencm3
static inline void wait_for_interrupt(void)
{
asm volatile ("wfi");
}
// A compiler memory barrier
static inline void barrier(void)
{
asm volatile ("" : : : "memory");
}
// util-debug.c
void debug_printf(const char *fmt, ...) __attribute__((format(printf,1,2)));
void debug_puts(const char *s);
void debug_putc(int c);
void debug_flush(void);
void debug_led(bool light);
void debug_led_toggle(void);

173
ucw-stm32lib/mk/bluepill.mk

@ -0,0 +1,173 @@
# Generic Makefile fragment for Blue Pill devices and LibOpenCM3
#
# Parameters:
#
# STM32LIB path to root of the stm32lib
# OPENCM3_DIR path to root of libopencm3
# BINARY binary to build (without extension)
# OBJS list of object files
# LIB_OBJS list of library object files
# WITH_BOOT_LOADER define if code origin should be shifted by 8K for boot loader
# WITH_DFU_FLASH flashing uses dfu-util
# WITH_SERIAL_FLASH flashing uses the built-in serial boot-loader
# MAX_SIZE complain if the built firmware exceeds this size
#
vpath %.c $(STM32LIB)/lib
OBJS += $(LIB_OBJS)
DEVICE?=stm32f103x8
.PHONY: all
all:: $(BINARY).elf
.PHONY: flash
flash: $(BINARY).flash
ifneq ($(V),1)
Q := @
NULL := 2>/dev/null
endif
include $(OPENCM3_DIR)/mk/genlink-config.mk
ifdef WITH_BOOT_LOADER
# We want to generate a linked script for a different ROM start address
UCW_LDSCRIPT=bootloader-$(DEVICE).ld
bootloader-$(DEVICE).ld: generated.$(DEVICE).ld
@printf " GENLNK2 $@\n"
$(Q)sed '/^ rom /s/ORIGIN = 0x08000000/ORIGIN = 0x08002000/' <$< >$@
else
UCW_LDSCRIPT=$(LDSCRIPT)
endif
PREFIX ?= arm-none-eabi
CC := $(PREFIX)-gcc
CXX := $(PREFIX)-g++
LD := $(PREFIX)-gcc
AR := $(PREFIX)-ar
AS := $(PREFIX)-as
OBJCOPY := $(PREFIX)-objcopy
OBJDUMP := $(PREFIX)-objdump
GDB := $(PREFIX)-gdb
OPT := -Os
DEBUG := -ggdb3
CSTD ?= -std=gnu99
TGT_CFLAGS += $(OPT) $(CSTD) $(DEBUG)
TGT_CFLAGS += $(ARCH_FLAGS)
TGT_CFLAGS += -Wall -Wextra -Wshadow -Wimplicit-function-declaration
TGT_CFLAGS += -Wredundant-decls -Wmissing-prototypes -Wstrict-prototypes -Wno-parentheses
TGT_CFLAGS += -fno-common -ffunction-sections -fdata-sections
TGT_CFLAGS += -I. -I$(STM32LIB)/lib
TGT_CPPFLAGS += -MD
TGT_LDFLAGS += --static -nostartfiles
TGT_LDFLAGS += -T$(UCW_LDSCRIPT)
TGT_LDFLAGS += $(ARCH_FLAGS) $(DEBUG)
TGT_LDFLAGS += -Wl,-Map=$(*).map -Wl,--cref
TGT_LDFLAGS += -Wl,--gc-sections
ifeq ($(V),99)
TGT_LDFLAGS += -Wl,--print-gc-sections
endif
LDLIBS += -Wl,--start-group -lc -lgcc -lnosys -Wl,--end-group
include $(OPENCM3_DIR)/mk/genlink-rules.mk
%.bin: %.elf
@printf " OBJCOPY $< -> $@\n"
$(Q)$(OBJCOPY) -Obinary $< $@
ifdef MAX_SIZE
$(Q)if [ $$(stat -c '%s' $@) -gt $(MAX_SIZE) ] ; then echo >&2 "Output too exceeds $(MAX_SIZE) bytes!" ; false ; fi
endif
%.elf: $(OBJS) $(UCW_LDSCRIPT)
@printf " LD $(*).elf\n"
$(Q)$(LD) $(TGT_LDFLAGS) $(LDFLAGS) $(OBJS) $(LDLIBS) -o $*.elf
%.o: %.c
@printf " CC $(*).c\n"
$(Q)$(CC) $(TGT_CFLAGS) $(CFLAGS) $(TGT_CPPFLAGS) $(CPPFLAGS) -o $@ -c $<
.PHONY: clean
clean:
@printf " CLEAN\n"
$(Q)rm -f *.elf *.bin *.dfu *.o *.d *.map $(LDSCRIPT) $(UCW_LDSCRIPT)
ifdef WITH_DFU_FLASH
HAVE_FLASH := 1
all:: $(BINARY).dfu
%.flash: %.dfu
@printf " FLASH $<\n"
$(Q)dfu-util $(DFU_ARGS) -D $<
# For the STM32duino-bootloader, we used:
#%.flash: %.bin
# @printf " FLASH $<\n"
# $(Q)dfu-util -a2 -D $(*).bin
endif
ifdef WITH_SERIAL_FLASH
HAVE_FLASH := 1
all:: $(BINARY).bin
BOOT_SERIAL ?= /dev/ttyUSB0
%.flash: %.bin
@printf " FLASH $<\n"
$(Q)stm32flash $(BOOT_SERIAL) -i 'dtr,-dtr' -w $< -g 0
.PHONY: reset
reset: all
$(Q)stm32flash $(BOOT_SERIAL) -i 'dtr,-dtr' -g 0
endif
ifdef WITH_MODBUS_FLASH
HAVE_FLASH := 1
all:: $(BINARY).dfu
%.flash: %.dfu
@printf " FLASH $<\n"
$(Q)$(STM32LIB)/tools/modbus-flash $(MODBUS_FLASH_ARGS) --flash $<
endif
ifndef HAVE_FLASH
all:: $(BINARY).bin
%.flash: %.bin
@printf " FLASH $<\n"
$(Q)st-flash write $(*).bin 0x8000000
.PHONY: reset
reset:
st-flash reset
endif
%.dfu: %.bin $(STM32LIB)/tools/dfu-sign
@printf " SIGN $< -> $@\n"
$(Q)$(STM32LIB)/tools/dfu-sign $< $@
$(STM32LIB)/tools/dfu-sign:
make -C $(STM32LIB)/tools
.SECONDEXPANSION:
.SECONDARY:
-include $(OBJS:.o=.d)

13
ucw-stm32lib/tools/Makefile

@ -0,0 +1,13 @@
PC=pkg-config
UCW_CFLAGS := $(shell $(PC) --cflags libucw)
UCW_LDLIBS := $(shell $(PC) --libs libucw)
CFLAGS=$(UCW_CFLAGS) -O2 -std=gnu99 -Wall -Wextra -Wno-parentheses -Wstrict-prototypes -Wmissing-prototypes
LDLIBS=$(UCW_LDLIBS) -lz
all: dfu-sign
dfu-sign: dfu-sign.c
clean:
rm -f dfu-sign *.o

245
ucw-stm32lib/tools/dfu-sign.c

@ -0,0 +1,245 @@
/*
* Sign firmware for our DFU boot-loader
*
* (c) 2020--2023 Martin Mareš <mj@ucw.cz>
*/
#include <ucw/lib.h>
#include <ucw/opt.h>
#include <ucw/unaligned.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <zlib.h>
static char *in_name;
static char *out_name;
static uint id_vendor = 0xffff;
static uint id_device = 0xffff;
static uint id_fw_ver = 0xffff;
static const struct opt_section options = {
OPT_ITEMS {
OPT_HELP("A simple tool for signing firmware for UCW STM32 DFU bootloader."),
OPT_HELP("Usage: dfu-sign [options] <input> <output>"),
OPT_STRING(OPT_POSITIONAL(1), NULL, in_name, OPT_REQUIRED, ""),
OPT_STRING(OPT_POSITIONAL(2), NULL, out_name, OPT_REQUIRED, ""),
OPT_HELP(""),
OPT_HELP("Options:"),
OPT_UINT(0, "vendor", id_vendor, OPT_REQUIRED_VALUE, "0xid\tvendor ID"),
OPT_UINT(0, "device", id_device, OPT_REQUIRED_VALUE, "0xid\tdevice ID"),
OPT_UINT(0, "fw-version", id_fw_ver, OPT_REQUIRED_VALUE, "0xver\tfirmware version"),
OPT_HELP_OPTION,
OPT_END
}
};
struct fw_header {
// The header lives in unused space between interrupt vectors
byte vectors[0x1c];
u32 length; // Firmware length in bytes, divisible by 4
// (excluding CRC appended at the end)
u16 flash_in_progress; // Temporarily non-zero during flashing
u16 rfu1;
u32 rfu2;
u32 rfu3;
};
struct dfu_trailer {
u16 fw_version;
u16 product_id;
u16 vendor_id;
u16 dfu_version;
byte dfu_sig[3];
byte trailer_len;
u32 crc; // CRC of the whole file except this field
};
static byte *firmware;
static uint firmware_len; // Without CRC and trailer
static struct fw_header *header;
static struct dfu_trailer *trailer;
/*** CRC used in DFU ***/
static const u32 crc32_table[256] = {
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
static u32 dfu_update_crc(u32 crc, byte x)
{
return crc32_table[(crc ^ x) & 0xff] ^ (crc >> 8);
}
static u32 dfu_crc(byte *buf, uint len)
{
u32 crc = 0xffffffff;
for (uint i = 0; i < len; i++)
crc = dfu_update_crc(crc, buf[i]);
return crc;
}
/*** CRC implemented in STM32F1 hardware ***/
static const u32 stm_crc_table[256] = {
0x00000000, 0x04c11db7, 0x09823b6e, 0x0d4326d9, 0x130476dc, 0x17c56b6b, 0x1a864db2, 0x1e475005,
0x2608edb8, 0x22c9f00f, 0x2f8ad6d6, 0x2b4bcb61, 0x350c9b64, 0x31cd86d3, 0x3c8ea00a, 0x384fbdbd,
0x4c11db70, 0x48d0c6c7, 0x4593e01e, 0x4152fda9, 0x5f15adac, 0x5bd4b01b, 0x569796c2, 0x52568b75,
0x6a1936c8, 0x6ed82b7f, 0x639b0da6, 0x675a1011, 0x791d4014, 0x7ddc5da3, 0x709f7b7a, 0x745e66cd,
0x9823b6e0, 0x9ce2ab57, 0x91a18d8e, 0x95609039, 0x8b27c03c, 0x8fe6dd8b, 0x82a5fb52, 0x8664e6e5,
0xbe2b5b58, 0xbaea46ef, 0xb7a96036, 0xb3687d81, 0xad2f2d84, 0xa9ee3033, 0xa4ad16ea, 0xa06c0b5d,
0xd4326d90, 0xd0f37027, 0xddb056fe, 0xd9714b49, 0xc7361b4c, 0xc3f706fb, 0xceb42022, 0xca753d95,
0xf23a8028, 0xf6fb9d9f, 0xfbb8bb46, 0xff79a6f1, 0xe13ef6f4, 0xe5ffeb43, 0xe8bccd9a, 0xec7dd02d,
0x34867077, 0x30476dc0, 0x3d044b19, 0x39c556ae, 0x278206ab, 0x23431b1c, 0x2e003dc5, 0x2ac12072,
0x128e9dcf, 0x164f8078, 0x1b0ca6a1, 0x1fcdbb16, 0x018aeb13, 0x054bf6a4, 0x0808d07d, 0x0cc9cdca,
0x7897ab07, 0x7c56b6b0, 0x71159069, 0x75d48dde, 0x6b93dddb, 0x6f52c06c, 0x6211e6b5, 0x66d0fb02,
0x5e9f46bf, 0x5a5e5b08, 0x571d7dd1, 0x53dc6066, 0x4d9b3063, 0x495a2dd4, 0x44190b0d, 0x40d816ba,
0xaca5c697, 0xa864db20, 0xa527fdf9, 0xa1e6e04e, 0xbfa1b04b, 0xbb60adfc, 0xb6238b25, 0xb2e29692,
0x8aad2b2f, 0x8e6c3698, 0x832f1041, 0x87ee0df6, 0x99a95df3, 0x9d684044, 0x902b669d, 0x94ea7b2a,
0xe0b41de7, 0xe4750050, 0xe9362689, 0xedf73b3e, 0xf3b06b3b, 0xf771768c, 0xfa325055, 0xfef34de2,
0xc6bcf05f, 0xc27dede8, 0xcf3ecb31, 0xcbffd686, 0xd5b88683, 0xd1799b34, 0xdc3abded, 0xd8fba05a,
0x690ce0ee, 0x6dcdfd59, 0x608edb80, 0x644fc637, 0x7a089632, 0x7ec98b85, 0x738aad5c, 0x774bb0eb,
0x4f040d56, 0x4bc510e1, 0x46863638, 0x42472b8f, 0x5c007b8a, 0x58c1663d, 0x558240e4, 0x51435d53,
0x251d3b9e, 0x21dc2629, 0x2c9f00f0, 0x285e1d47, 0x36194d42, 0x32d850f5, 0x3f9b762c, 0x3b5a6b9b,
0x0315d626, 0x07d4cb91, 0x0a97ed48, 0x0e56f0ff, 0x1011a0fa, 0x14d0bd4d, 0x19939b94, 0x1d528623,
0xf12f560e, 0xf5ee4bb9, 0xf8ad6d60, 0xfc6c70d7, 0xe22b20d2, 0xe6ea3d65, 0xeba91bbc, 0xef68060b,
0xd727bbb6, 0xd3e6a601, 0xdea580d8, 0xda649d6f, 0xc423cd6a, 0xc0e2d0dd, 0xcda1f604, 0xc960ebb3,
0xbd3e8d7e, 0xb9ff90c9, 0xb4bcb610, 0xb07daba7, 0xae3afba2, 0xaafbe615, 0xa7b8c0cc, 0xa379dd7b,
0x9b3660c6, 0x9ff77d71, 0x92b45ba8, 0x9675461f, 0x8832161a, 0x8cf30bad, 0x81b02d74, 0x857130c3,
0x5d8a9099, 0x594b8d2e, 0x5408abf7, 0x50c9b640, 0x4e8ee645, 0x4a4ffbf2, 0x470cdd2b, 0x43cdc09c,
0x7b827d21, 0x7f436096, 0x7200464f, 0x76c15bf8, 0x68860bfd, 0x6c47164a, 0x61043093, 0x65c52d24,
0x119b4be9, 0x155a565e, 0x18197087, 0x1cd86d30, 0x029f3d35, 0x065e2082, 0x0b1d065b, 0x0fdc1bec,
0x3793a651, 0x3352bbe6, 0x3e119d3f, 0x3ad08088, 0x2497d08d, 0x2056cd3a, 0x2d15ebe3, 0x29d4f654,
0xc5a92679, 0xc1683bce, 0xcc2b1d17, 0xc8ea00a0, 0xd6ad50a5, 0xd26c4d12, 0xdf2f6bcb, 0xdbee767c,
0xe3a1cbc1, 0xe760d676, 0xea23f0af, 0xeee2ed18, 0xf0a5bd1d, 0xf464a0aa, 0xf9278673, 0xfde69bc4,
0x89b8fd09, 0x8d79e0be, 0x803ac667, 0x84fbdbd0, 0x9abc8bd5, 0x9e7d9662, 0x933eb0bb, 0x97ffad0c,
0xafb010b1, 0xab710d06, 0xa6322bdf, 0xa2f33668, 0xbcb4666d, 0xb8757bda, 0xb5365d03, 0xb1f740b4,
};
static u32 stm_update_crc(u32 crc, byte x)
{
return (crc << 8) ^ stm_crc_table[0xff & ((crc >> 24) ^ x)];
}
static u32 stm32_crc(byte *buf, uint len)
{
u32 crc = 0xffffffff;
for (uint i = 0; i < len; i += 4) {
crc = stm_update_crc(crc, buf[i+3]);
crc = stm_update_crc(crc, buf[i+2]);
crc = stm_update_crc(crc, buf[i+1]);
crc = stm_update_crc(crc, buf[i+0]);
}
return crc;
}
static void read_fw(void)
{
int fd = open(in_name, O_RDONLY);
if (fd < 0)
die("Cannot open %s: %m", in_name);
uint orig_firmware_len = lseek(fd, 0, SEEK_END);
lseek(fd, 0, SEEK_SET);
firmware_len = orig_firmware_len;
while (firmware_len % 4)
firmware_len++;
firmware = xmalloc_zero(firmware_len + 4 + sizeof(struct dfu_trailer));
header = (struct fw_header *)firmware;
trailer = (struct dfu_trailer *)(firmware + firmware_len + 4);
if (read(fd, firmware, orig_firmware_len) != (int) orig_firmware_len)
die("Error reading %s: %m", in_name);
close(fd);
}
static void build_header_and_crc(void)
{
put_u32_le(&header->length, firmware_len);
header->rfu1 = 0;
header->rfu2 = 0;
header->rfu3 = 0;
put_u32_le(firmware + firmware_len, stm32_crc(firmware, firmware_len));
}
static void build_trailer(void)
{
struct dfu_trailer *t = trailer;
t->trailer_len = sizeof(struct dfu_trailer);
memcpy(t->dfu_sig, "UFD", 3);
put_u16_le(&t->dfu_version, 0x0100);
put_u16_le(&t->vendor_id, id_vendor);
put_u16_le(&t->product_id, id_device);
put_u16_le(&t->fw_version, id_fw_ver);
put_u32_le(&t->crc, dfu_crc(firmware, firmware_len + 4 + t->trailer_len - 4));
}
static void write_out(void)
{
int fd = open(out_name, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (fd < 0)
die("Cannot create %s: %m", out_name);
int len = firmware_len + 4 + sizeof(struct dfu_trailer);
if (write(fd, firmware, len) != len)
die("Error writing %s: %m", out_name);
close(fd);
}
int main(int argc UNUSED, char **argv)
{
opt_parse(&options, argv+1);
read_fw();
build_header_and_crc();
build_trailer();
write_out();
return 0;
}
Loading…
Cancel
Save