/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * This library supports the Reset and Clock Control System in the STM32 series * of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ #include #include #include #include /**@{*/ uint32_t rcc_ahb_frequency = 16000000; uint32_t rcc_apb1_frequency = 16000000; uint32_t rcc_apb2_frequency = 16000000; // All PLL configurations without PLLM. PLLM should be set to the input clock // frequency in MHz. const struct rcc_clock_scale rcc_3v3[RCC_CLOCK_3V3_END] = { { /* 216MHz */ .plln = 432, .pllp = 2, .pllq = 9, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV4, .ppre2 = RCC_CFGR_PPRE_DIV2, .vos_scale = PWR_SCALE1, .overdrive = 1, .flash_waitstates = 7, .ahb_frequency = 216000000, .apb1_frequency = 54000000, .apb2_frequency = 108000000, }, { /* 168MHz */ .plln = 336, .pllp = 2, .pllq = 7, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV4, .ppre2 = RCC_CFGR_PPRE_DIV2, .vos_scale = PWR_SCALE2, .overdrive = 1, .flash_waitstates = 5, .ahb_frequency = 168000000, .apb1_frequency = 42000000, .apb2_frequency = 84000000, }, { /* 120MHz */ .plln = 240, .pllp = 2, .pllq = 5, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV4, .ppre2 = RCC_CFGR_PPRE_DIV2, .vos_scale = PWR_SCALE3, .overdrive = 0, .flash_waitstates = 3, .ahb_frequency = 120000000, .apb1_frequency = 30000000, .apb2_frequency = 60000000, }, { /* 72MHz */ .plln = 144, .pllp = 2, .pllq = 3, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV4, .ppre2 = RCC_CFGR_PPRE_DIV2, .vos_scale = PWR_SCALE3, .overdrive = 0, .flash_waitstates = 2, .ahb_frequency = 72000000, .apb1_frequency = 18000000, .apb2_frequency = 36000000, }, { /* 48MHz */ .plln = 192, .pllp = 4, .pllq = 4, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV2, .ppre2 = RCC_CFGR_PPRE_DIV2, .vos_scale = PWR_SCALE3, .overdrive = 0, .flash_waitstates = 1, .ahb_frequency = 48000000, .apb1_frequency = 24000000, .apb2_frequency = 24000000, }, { /* 24MHz */ .plln = 192, .pllp = 8, .pllq = 4, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_NODIV, .ppre2 = RCC_CFGR_PPRE_NODIV, .vos_scale = PWR_SCALE3, .overdrive = 0, .flash_waitstates = 0, .ahb_frequency = 24000000, .apb1_frequency = 24000000, .apb2_frequency = 24000000, } }; void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR &= ~RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR &= ~RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR &= ~RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR &= ~RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR &= ~RCC_CIR_LSIRDYIE; break; } } int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIR & RCC_CIR_HSERDYF) != 0); break; case RCC_HSI: return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIR & RCC_CIR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } void rcc_wait_for_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while ((RCC_CR & RCC_CR_PLLRDY) == 0); break; case RCC_HSE: while ((RCC_CR & RCC_CR_HSERDY) == 0); break; case RCC_HSI: while ((RCC_CR & RCC_CR_HSIRDY) == 0); break; case RCC_LSE: while ((RCC_BDCR & RCC_BDCR_LSERDY) == 0); break; case RCC_LSI: while ((RCC_CSR & RCC_CSR_LSIRDY) == 0); break; } } void rcc_wait_for_sysclk_status(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_PLL); break; case RCC_HSE: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSE); break; case RCC_HSI: while ((RCC_CFGR & ((1 << 1) | (1 << 0))) != RCC_CFGR_SWS_HSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT); RCC_CFGR = (reg32 | (clk << RCC_CFGR_SW_SHIFT)); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_PLLCFGR; reg32 &= ~(1 << 22); RCC_PLLCFGR = (reg32 | (pllsrc << 22)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT); RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT); RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } void rcc_set_rtcpre(uint32_t rtcpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_RTCPRE_MASK << RCC_CFGR_RTCPRE_SHIFT); RCC_CFGR = (reg32 | (rtcpre << RCC_CFGR_RTCPRE_SHIFT)); } void rcc_set_main_pll_hsi(uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq) { RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) | (pllq << RCC_PLLCFGR_PLLQ_SHIFT); } void rcc_set_main_pll_hse(uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq) { RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) | RCC_PLLCFGR_PLLSRC | (pllq << RCC_PLLCFGR_PLLQ_SHIFT); } uint32_t rcc_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK; } void rcc_clock_setup_hse(const struct rcc_clock_scale *clock, uint32_t hse_mhz) { uint8_t pllm = hse_mhz; /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* Enable external high-speed oscillator. */ rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); rcc_periph_clock_enable(RCC_PWR); pwr_set_vos_scale(clock->vos_scale); if (clock->overdrive) { pwr_enable_overdrive(); } /* * Set prescalers for AHB, ADC, APB1, APB2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); /* Disable PLL oscillator before changing its configuration. */ rcc_osc_off(RCC_PLL); /* Configure the PLL oscillator. */ rcc_set_main_pll_hse(pllm, clock->plln, clock->pllp, clock->pllq); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* Configure flash settings. */ flash_set_ws(clock->flash_waitstates); flash_art_enable(); flash_prefetch_enable(); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; /* Disable internal high-speed oscillator. */ rcc_osc_off(RCC_HSI); } void rcc_clock_setup_hsi(const struct rcc_clock_scale *clock) { uint8_t pllm = 16; /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); rcc_periph_clock_enable(RCC_PWR); pwr_set_vos_scale(clock->vos_scale); if (clock->overdrive) { pwr_enable_overdrive(); } /* * Set prescalers for AHB, ADC, APB1, APB2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); rcc_set_main_pll_hsi(pllm, clock->plln, clock->pllp, clock->pllq); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* Configure flash settings. */ flash_set_ws(clock->flash_waitstates); flash_art_enable(); flash_prefetch_enable(); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } static uint32_t rcc_usart_i2c_clksel_freq(uint32_t apb_clk, uint8_t shift) { uint8_t clksel = (RCC_DCKCFGR2 >> shift) & RCC_DCKCFGR2_UART1SEL_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_DCKCFGR2_UARTxSEL_PCLK: return apb_clk; case RCC_DCKCFGR2_UARTxSEL_SYSCLK: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_DCKCFGR2_UARTxSEL_HSI: return 16000000U; default: cm3_assert_not_reached(); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { /* F7 is highly configurable, every USART can be configured in DCKCFGR2. */ if (usart == USART1_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb2_frequency, RCC_DCKCFGR2_UART1SEL_SHIFT); } else if (usart == USART2_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART2SEL_SHIFT); } else if (usart == USART3_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART3SEL_SHIFT); } else if (usart == UART4_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART4SEL_SHIFT); } else if (usart == UART5_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART5SEL_SHIFT); } else if (usart == USART6_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb2_frequency, RCC_DCKCFGR2_USART6SEL_SHIFT); } else if (usart == UART7_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART7SEL_SHIFT); } else { /* UART8 */ return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_UART8SEL_SHIFT); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer) { /* Handle APB1 timer clocks. */ if (timer >= TIM2_BASE && timer <= TIM14_BASE) { uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK; return (ppre1 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } else { uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK; return (ppre2 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb2_frequency : 2 * rcc_apb2_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c __attribute__((unused))) { if (i2c == I2C1_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_I2C1SEL_SHIFT); } else if (i2c == I2C2_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_I2C2SEL_SHIFT); } else if (i2c == I2C3_BASE) { return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_I2C3SEL_SHIFT); } else { /* I2C4 */ return rcc_usart_i2c_clksel_freq(rcc_apb1_frequency, RCC_DCKCFGR2_I2C4SEL_SHIFT); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi) { if (spi == SPI2_BASE || spi == SPI3_BASE) { return rcc_apb1_frequency; } else { return rcc_apb2_frequency; } } /**@}*/