/* * Image Library -- Computation of image signatures * * (c) 2006 Pavel Charvat * * This software may be freely distributed and used according to the terms * of the GNU Lesser General Public License. */ #undef LOCAL_DEBUG #include #include #include #include #include #include #include #include #include #include int image_sig_init(struct image_context *ctx, struct image_sig_data *data, struct image *image) { ASSERT((image->flags & IMAGE_PIXEL_FORMAT) == COLOR_SPACE_RGB); data->image = image; data->flags = 0; data->cols = (image->cols + 3) >> 2; data->rows = (image->rows + 3) >> 2; data->full_cols = image->cols >> 2; data->full_rows = image->rows >> 2; data->blocks_count = data->cols * data->rows; if (data->blocks_count >= 0x10000) { IMAGE_ERROR(ctx, IMAGE_ERROR_INVALID_DIMENSIONS, "Image too large for implemented signature algorithm."); return 0; } data->blocks = xmalloc(data->blocks_count * sizeof(struct image_sig_block)); data->area = image->cols * image->rows; DBG("Computing signature for image of %ux%u pixels (%ux%u blocks)", image->cols, image->rows, data->cols, data->rows); return 1; } void image_sig_preprocess(struct image_sig_data *data) { struct image *image = data->image; struct image_sig_block *block = data->blocks; uint sum[IMAGE_VEC_F]; bzero(sum, sizeof(sum)); /* Every block of 4x4 pixels */ byte *row_start = image->pixels; for (uint block_y = 0; block_y < data->rows; block_y++, row_start += image->row_size * 4) { byte *p = row_start; for (uint block_x = 0; block_x < data->cols; block_x++, p += 12, block++) { int t[16], s[16], *tp = t; block->x = block_x; block->y = block_y; /* Convert pixels to Luv color space and compute average coefficients */ uint l_sum = 0, u_sum = 0, v_sum = 0; byte *p2 = p; if (block_x < data->full_cols && block_y < data->full_rows) { for (uint y = 0; y < 4; y++, p2 += image->row_size - 12) for (uint x = 0; x < 4; x++, p2 += 3) { byte luv[3]; srgb_to_luv_pixel(luv, p2); l_sum += *tp++ = luv[0] / 4; u_sum += luv[1]; v_sum += luv[2]; } block->area = 16; sum[0] += l_sum; sum[1] += u_sum; sum[2] += v_sum; block->v[0] = (l_sum >> 4); block->v[1] = (u_sum >> 4); block->v[2] = (v_sum >> 4); } /* Incomplete square near the edge */ else { uint x, y; uint square_cols = (block_x < data->full_cols) ? 4 : image->cols & 3; uint square_rows = (block_y < data->full_rows) ? 4 : image->rows & 3; for (y = 0; y < square_rows; y++, p2 += image->row_size) { byte *p3 = p2; for (x = 0; x < square_cols; x++, p3 += 3) { byte luv[3]; srgb_to_luv_pixel(luv, p3); l_sum += *tp++ = luv[0] / 4; u_sum += luv[1]; v_sum += luv[2]; } for (; x < 4; x++) { *tp = tp[-(int)square_cols]; tp++; } } for (; y < 4; y++) for (x = 0; x < 4; x++) { *tp = tp[-(int)square_rows * 4]; tp++; } block->area = square_cols * square_rows; uint inv = 0x10000 / block->area; sum[0] += l_sum; sum[1] += u_sum; sum[2] += v_sum; block->v[0] = (l_sum * inv) >> 16; block->v[1] = (u_sum * inv) >> 16; block->v[2] = (v_sum * inv) >> 16; } /* Apply Daubechies wavelet transformation */ # define DAUB_0 31651 /* (1 + sqrt 3) / (4 * sqrt 2) * 0x10000 */ # define DAUB_1 54822 /* (3 + sqrt 3) / (4 * sqrt 2) * 0x10000 */ # define DAUB_2 14689 /* (3 - sqrt 3) / (4 * sqrt 2) * 0x10000 */ # define DAUB_3 -8481 /* (1 - sqrt 3) / (4 * sqrt 2) * 0x10000 */ /* ... to the rows */ uint i; for (i = 0; i < 16; i += 4) { s[i + 0] = (DAUB_0 * t[i + 2] + DAUB_1 * t[i + 3] + DAUB_2 * t[i + 0] + DAUB_3 * t[i + 1]) / 0x10000; s[i + 1] = (DAUB_0 * t[i + 0] + DAUB_1 * t[i + 1] + DAUB_2 * t[i + 2] + DAUB_3 * t[i + 3]) / 0x10000; s[i + 2] = (DAUB_3 * t[i + 2] - DAUB_2 * t[i + 3] + DAUB_1 * t[i + 0] - DAUB_0 * t[i + 1]) / 0x10000; s[i + 3] = (DAUB_3 * t[i + 0] - DAUB_2 * t[i + 1] + DAUB_1 * t[i + 2] - DAUB_0 * t[i + 3]) / 0x10000; } /* ... and to the columns... skip LL band */ for (i = 0; i < 2; i++) { t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x10000; t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x10000; } for (; i < 4; i++) { t[i + 0] = (DAUB_0 * s[i + 8] + DAUB_1 * s[i +12] + DAUB_2 * s[i + 0] + DAUB_3 * s[i + 4]) / 0x10000; t[i + 4] = (DAUB_0 * s[i + 0] + DAUB_1 * s[i + 4] + DAUB_2 * s[i + 8] + DAUB_3 * s[i +12]) / 0x10000; t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x10000; t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x10000; } /* Extract energies in LH, HL and HH bands */ block->v[3] = fast_sqrt_u32(isqr(t[8]) + isqr(t[9]) + isqr(t[12]) + isqr(t[13])); block->v[4] = fast_sqrt_u32(isqr(t[2]) + isqr(t[3]) + isqr(t[6]) + isqr(t[7])); block->v[5] = fast_sqrt_u32(isqr(t[10]) + isqr(t[11]) + isqr(t[14]) + isqr(t[15])); sum[3] += block->v[3] * block->area; sum[4] += block->v[4] * block->area; sum[5] += block->v[5] * block->area; } } /* Compute featrures average */ uint inv = 0xffffffffU / data->area; for (uint i = 0; i < IMAGE_VEC_F; i++) data->f[i] = ((u64)sum[i] * inv) >> 32; if (image->cols < image_sig_min_width || image->rows < image_sig_min_height) { data->valid = 0; data->regions_count = 0; } else data->valid = 1; } void image_sig_finish(struct image_sig_data *data, struct image_signature *sig) { for (uint i = 0; i < IMAGE_VEC_F; i++) sig->vec.f[i] = data->f[i]; sig->len = data->regions_count; sig->flags = data->flags; if (!sig->len) return; /* For each region */ u64 w_total = 0; uint w_border = MIN(data->cols, data->rows) * image_sig_border_size; int w_mul = w_border ? image_sig_border_bonus * 256 / (int)w_border : 0; for (uint i = 0; i < sig->len; i++) { struct image_sig_region *r = data->regions + i; DBG("Processing region %u: count=%u", i, r->count); ASSERT(r->count); /* Copy texture properties */ sig->reg[i].f[0] = r->a[0]; sig->reg[i].f[1] = r->a[1]; sig->reg[i].f[2] = r->a[2]; sig->reg[i].f[3] = r->a[3]; sig->reg[i].f[4] = r->a[4]; sig->reg[i].f[5] = r->a[5]; /* Compute coordinates centroid and region weight */ u64 x_sum = 0, y_sum = 0, w_sum = 0; for (struct image_sig_block *b = r->blocks; b; b = b->next) { x_sum += b->x; y_sum += b->y; uint d = b->x; d = MIN(d, b->y); d = MIN(d, data->cols - b->x - 1); d = MIN(d, data->rows - b->y - 1); if (d >= w_border) w_sum += 128; else w_sum += 128 + (int)(w_border - d) * w_mul / 256; } w_total += w_sum; r->w_sum = w_sum; uint x_avg = x_sum / r->count; uint y_avg = y_sum / r->count; DBG(" centroid=(%u %u)", x_avg, y_avg); /* Compute normalized inertia */ u64 sum1 = 0, sum2 = 0, sum3 = 0; for (struct image_sig_block *b = r->blocks; b; b = b->next) { uint inc2 = isqr(x_avg - b->x) + isqr(y_avg - b->y); uint inc1 = fast_sqrt_u32(inc2); sum1 += inc1; sum2 += inc2; sum3 += inc1 * inc2; } sig->reg[i].h[0] = CLAMP(image_sig_inertia_scale[0] * sum1 * ((3 * M_PI * M_PI) / 2) * pow(r->count, -1.5), 0, 255); sig->reg[i].h[1] = CLAMP(image_sig_inertia_scale[1] * sum2 * ((4 * M_PI * M_PI * M_PI) / 2) / ((u64)r->count * r->count), 0, 255); sig->reg[i].h[2] = CLAMP(image_sig_inertia_scale[2] * sum3 * ((5 * M_PI * M_PI * M_PI * M_PI) / 2) * pow(r->count, -2.5), 0, 255); sig->reg[i].h[3] = (uint)x_avg * 127 / data->cols; sig->reg[i].h[4] = (uint)y_avg * 127 / data->rows; } /* Compute average differences */ u64 df = 0, dh = 0; if (sig->len < 2) { sig->df = 1; sig->dh = 1; } else { uint cnt = 0; for (uint i = 0; i < sig->len; i++) for (uint j = i + 1; j < sig->len; j++) { uint d = 0; for (uint k = 0; k < IMAGE_REG_F; k++) d += image_sig_cmp_features_weights[k] * isqr(sig->reg[i].f[k] - sig->reg[j].f[k]); df += fast_sqrt_u32(d); d = 0; for (uint k = 0; k < IMAGE_REG_H; k++) d += image_sig_cmp_features_weights[k + IMAGE_REG_F] * isqr(sig->reg[i].h[k] - sig->reg[j].h[k]); dh += fast_sqrt_u32(d); cnt++; } sig->df = CLAMP(df / cnt, 1, 0xffff); sig->dh = CLAMP(dh / cnt, 1, 0xffff); } DBG("Average regions difs: df=%u dh=%u", sig->df, sig->dh); /* Compute normalized weights */ uint wa = 128, wb = 128; for (uint i = sig->len; --i > 0; ) { struct image_sig_region *r = data->regions + i; wa -= sig->reg[i].wa = CLAMP(r->count * 128 / data->blocks_count, 1, (int)(wa - i)); wb -= sig->reg[i].wb = CLAMP(r->w_sum * 128 / w_total, 1, (int)(wb - i)); } sig->reg[0].wa = wa; sig->reg[0].wb = wb; /* Store image dimensions */ sig->cols = data->image->cols; sig->rows = data->image->rows; /* Dump regions features */ #ifdef LOCAL_DEBUG for (uint i = 0; i < sig->len; i++) { byte buf[IMAGE_REGION_DUMP_MAX]; image_region_dump(buf, sig->reg + i); DBG("region %u: features=%s", i, buf); } #endif } void image_sig_cleanup(struct image_sig_data *data) { xfree(data->blocks); } int compute_image_signature(struct image_context *ctx, struct image_signature *sig, struct image *image) { struct image_sig_data data; if (!image_sig_init(ctx, &data, image)) return 0; image_sig_preprocess(&data); if (data.valid) { image_sig_segmentation(&data); image_sig_detect_textured(&data); } image_sig_finish(&data, sig); image_sig_cleanup(&data); return 1; }