/* * UCW Library -- Memory Pools (One-Time Allocation) * * (c) 1997--2014 Martin Mares * (c) 2007--2017 Pavel Charvat * * This software may be freely distributed and used according to the terms * of the GNU Lesser General Public License. */ #undef LOCAL_DEBUG #include #include #include #include #define MP_CHUNK_TAIL ALIGN_TO(sizeof(struct mempool_chunk), CPU_STRUCT_ALIGN) #define MP_SIZE_MAX (SIZE_MAX - MP_CHUNK_TAIL - CPU_PAGE_SIZE) struct mempool_chunk { #ifdef CONFIG_DEBUG struct mempool *pool; // Can be useful when analysing coredump for memory leaks #endif struct mempool_chunk *next; size_t size; }; static size_t mp_align_size(size_t size) { #ifdef CONFIG_UCW_POOL_IS_MMAP size = MAX(size, 64 + MP_CHUNK_TAIL); return ALIGN_TO(size, CPU_PAGE_SIZE) - MP_CHUNK_TAIL; #else return ALIGN_TO(size, CPU_STRUCT_ALIGN); #endif } static void *mp_allocator_alloc(struct ucw_allocator *a, size_t size) { struct mempool *mp = (struct mempool *) a; return mp_alloc_fast(mp, size); } static void *mp_allocator_realloc(struct ucw_allocator *a, void *ptr, size_t old_size, size_t new_size) { if (new_size <= old_size) return ptr; /* * In the future, we might want to do something like mp_realloc(), * but we have to check that it is indeed the last block in the pool. */ struct mempool *mp = (struct mempool *) a; void *new = mp_alloc_fast(mp, new_size); memcpy(new, ptr, old_size); return new; } static void mp_allocator_free(struct ucw_allocator *a UNUSED, void *ptr UNUSED) { // Does nothing } void mp_init(struct mempool *pool, size_t chunk_size) { chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size)); *pool = (struct mempool) { .allocator = { .alloc = mp_allocator_alloc, .realloc = mp_allocator_realloc, .free = mp_allocator_free, }, .chunk_size = chunk_size, .threshold = chunk_size >> 1, .last_big = &pool->last_big }; } static void * mp_new_big_chunk(struct mempool *pool, size_t size) { struct mempool_chunk *chunk; chunk = xmalloc(size + MP_CHUNK_TAIL) + size; chunk->size = size; if (pool) pool->total_size += size + MP_CHUNK_TAIL; return chunk; } static void mp_free_big_chunk(struct mempool *pool, struct mempool_chunk *chunk) { pool->total_size -= chunk->size + MP_CHUNK_TAIL; xfree((void *)chunk - chunk->size); } static void * mp_new_chunk(struct mempool *pool, size_t size) { #ifdef CONFIG_UCW_POOL_IS_MMAP struct mempool_chunk *chunk; chunk = page_alloc(size + MP_CHUNK_TAIL) + size; chunk->size = size; if (pool) pool->total_size += size + MP_CHUNK_TAIL; return chunk; #else return mp_new_big_chunk(pool, size); #endif } static void mp_free_chunk(struct mempool *pool, struct mempool_chunk *chunk) { #ifdef CONFIG_UCW_POOL_IS_MMAP pool->total_size -= chunk->size + MP_CHUNK_TAIL; page_free((void *)chunk - chunk->size, chunk->size + MP_CHUNK_TAIL); #else mp_free_big_chunk(pool, chunk); #endif } struct mempool * mp_new(size_t chunk_size) { chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size)); struct mempool_chunk *chunk = mp_new_chunk(NULL, chunk_size); struct mempool *pool = (void *)chunk - chunk_size; DBG("Creating mempool %p with %zu bytes long chunks", pool, chunk_size); chunk->next = NULL; #ifdef CONFIG_DEBUG chunk->pool = pool; #endif *pool = (struct mempool) { .allocator = { .alloc = mp_allocator_alloc, .realloc = mp_allocator_realloc, .free = mp_allocator_free, }, .state = { .free = { chunk_size - sizeof(*pool) }, .last = { chunk } }, .chunk_size = chunk_size, .threshold = chunk_size >> 1, .last_big = &pool->last_big, .total_size = chunk->size + MP_CHUNK_TAIL, }; return pool; } static void mp_free_chain(struct mempool *pool, struct mempool_chunk *chunk) { while (chunk) { struct mempool_chunk *next = chunk->next; mp_free_chunk(pool, chunk); chunk = next; } } static void mp_free_big_chain(struct mempool *pool, struct mempool_chunk *chunk) { while (chunk) { struct mempool_chunk *next = chunk->next; mp_free_big_chunk(pool, chunk); chunk = next; } } void mp_delete(struct mempool *pool) { DBG("Deleting mempool %p", pool); mp_free_big_chain(pool, pool->state.last[1]); mp_free_chain(pool, pool->unused); mp_free_chain(pool, pool->state.last[0]); // can contain the mempool structure } void mp_flush(struct mempool *pool) { mp_free_big_chain(pool, pool->state.last[1]); struct mempool_chunk *chunk, *next; for (chunk = pool->state.last[0]; chunk && (void *)chunk - chunk->size != pool; chunk = next) { next = chunk->next; chunk->next = pool->unused; pool->unused = chunk; } pool->state.last[0] = chunk; pool->state.free[0] = chunk ? chunk->size - sizeof(*pool) : 0; pool->state.last[1] = NULL; pool->state.free[1] = 0; pool->state.next = NULL; pool->last_big = &pool->last_big; } static void mp_stats_chain(struct mempool *pool, struct mempool_chunk *chunk, struct mempool_stats *stats, uint idx) { while (chunk) { stats->chain_size[idx] += chunk->size + MP_CHUNK_TAIL; stats->chain_count[idx]++; if (idx < 2) { stats->used_size += chunk->size; if ((byte *)pool == (byte *)chunk - chunk->size) stats->used_size -= sizeof(*pool); } chunk = chunk->next; } stats->total_size += stats->chain_size[idx]; } void mp_stats(struct mempool *pool, struct mempool_stats *stats) { bzero(stats, sizeof(*stats)); mp_stats_chain(pool, pool->state.last[0], stats, 0); mp_stats_chain(pool, pool->state.last[1], stats, 1); mp_stats_chain(pool, pool->unused, stats, 2); stats->used_size -= pool->state.free[0] + pool->state.free[1]; ASSERT(stats->total_size == pool->total_size); ASSERT(stats->used_size <= stats->total_size); } u64 mp_total_size(struct mempool *pool) { return pool->total_size; } void mp_shrink(struct mempool *pool, u64 min_total_size) { while (1) { struct mempool_chunk *chunk = pool->unused; if (!chunk || pool->total_size - (chunk->size + MP_CHUNK_TAIL) < min_total_size) break; pool->unused = chunk->next; mp_free_chunk(pool, chunk); } } void * mp_alloc_internal(struct mempool *pool, size_t size) { struct mempool_chunk *chunk; if (size <= pool->threshold) { pool->idx = 0; if (pool->unused) { chunk = pool->unused; pool->unused = chunk->next; } else { chunk = mp_new_chunk(pool, pool->chunk_size); #ifdef CONFIG_DEBUG chunk->pool = pool; #endif } chunk->next = pool->state.last[0]; pool->state.last[0] = chunk; pool->state.free[0] = pool->chunk_size - size; return (void *)chunk - pool->chunk_size; } else if (likely(size <= MP_SIZE_MAX)) { pool->idx = 1; size_t aligned = ALIGN_TO(size, CPU_STRUCT_ALIGN); chunk = mp_new_big_chunk(pool, aligned); chunk->next = pool->state.last[1]; #ifdef CONFIG_DEBUG chunk->pool = pool; #endif pool->state.last[1] = chunk; pool->state.free[1] = aligned - size; return pool->last_big = (void *)chunk - aligned; } else die("Cannot allocate %zu bytes from a mempool", size); } void * mp_alloc(struct mempool *pool, size_t size) { return mp_alloc_fast(pool, size); } void * mp_alloc_noalign(struct mempool *pool, size_t size) { return mp_alloc_fast_noalign(pool, size); } void * mp_alloc_zero(struct mempool *pool, size_t size) { void *ptr = mp_alloc_fast(pool, size); bzero(ptr, size); return ptr; } void * mp_start_internal(struct mempool *pool, size_t size) { void *ptr = mp_alloc_internal(pool, size); pool->state.free[pool->idx] += size; return ptr; } void * mp_start(struct mempool *pool, size_t size) { return mp_start_fast(pool, size); } void * mp_start_noalign(struct mempool *pool, size_t size) { return mp_start_fast_noalign(pool, size); } void * mp_grow_internal(struct mempool *pool, size_t size) { if (unlikely(size > MP_SIZE_MAX)) die("Cannot allocate %zu bytes of memory", size); size_t avail = mp_avail(pool); void *ptr = mp_ptr(pool); if (pool->idx) { size_t amortized = likely(avail <= MP_SIZE_MAX / 2) ? avail * 2 : MP_SIZE_MAX; amortized = MAX(amortized, size); amortized = ALIGN_TO(amortized, CPU_STRUCT_ALIGN); struct mempool_chunk *chunk = pool->state.last[1], *next = chunk->next; pool->total_size = pool->total_size - chunk->size + amortized; ptr = xrealloc(ptr, amortized + MP_CHUNK_TAIL); chunk = ptr + amortized; chunk->next = next; chunk->size = amortized; pool->state.last[1] = chunk; pool->state.free[1] = amortized; pool->last_big = ptr; return ptr; } else { void *p = mp_start_internal(pool, size); memcpy(p, ptr, avail); return p; } } size_t mp_open(struct mempool *pool, void *ptr) { return mp_open_fast(pool, ptr); } void * mp_realloc(struct mempool *pool, void *ptr, size_t size) { return mp_realloc_fast(pool, ptr, size); } void * mp_realloc_zero(struct mempool *pool, void *ptr, size_t size) { size_t old_size = mp_open_fast(pool, ptr); ptr = mp_grow(pool, size); if (size > old_size) bzero(ptr + old_size, size - old_size); mp_end(pool, ptr + size); return ptr; } void * mp_spread_internal(struct mempool *pool, void *p, size_t size) { void *old = mp_ptr(pool); void *new = mp_grow_internal(pool, p-old+size); return p-old+new; } void mp_restore(struct mempool *pool, struct mempool_state *state) { struct mempool_chunk *chunk, *next; struct mempool_state s = *state; for (chunk = pool->state.last[0]; chunk != s.last[0]; chunk = next) { next = chunk->next; chunk->next = pool->unused; pool->unused = chunk; } for (chunk = pool->state.last[1]; chunk != s.last[1]; chunk = next) { next = chunk->next; mp_free_big_chunk(pool, chunk); } pool->state = s; pool->last_big = &pool->last_big; } struct mempool_state * mp_push(struct mempool *pool) { struct mempool_state state = pool->state; struct mempool_state *p = mp_alloc_fast(pool, sizeof(*p)); *p = state; pool->state.next = p; return p; } void mp_pop(struct mempool *pool) { ASSERT(pool->state.next); mp_restore(pool, pool->state.next); } #ifdef TEST #include #include static void fill(byte *ptr, uint len, uint magic) { while (len--) *ptr++ = (magic++ & 255); } static void check(byte *ptr, uint len, uint magic, uint align) { ASSERT(!((uintptr_t)ptr & (align - 1))); while (len--) if (*ptr++ != (magic++ & 255)) ASSERT(0); } int main(int argc, char **argv) { log_init(argv[0]); cf_def_file = NULL; if (cf_getopt(argc, argv, CF_SHORT_OPTS, CF_NO_LONG_OPTS, NULL) >= 0 || argc != optind) die("Invalid usage"); random_gen_seed(); uint max = 1000, n = 0, m = 0, can_realloc = 0; void *ptr[max]; struct mempool_state *state[max]; uint len[max], num[max], align[max]; struct mempool *mp = mp_new(128), mp_static; for (uint i = 0; i < 5000; i++) { for (uint j = 0; j < n; j++) check(ptr[j], len[j], j, align[j]); #if 0 DBG("free_small=%u free_big=%u idx=%u chunk_size=%u last_big=%p", mp->state.free[0], mp->state.free[1], mp->idx, mp->chunk_size, mp->last_big); for (struct mempool_chunk *ch = mp->state.last[0]; ch; ch = ch->next) DBG("small %p %p %p %d", (byte *)ch - ch->size, ch, ch + 1, ch->size); for (struct mempool_chunk *ch = mp->state.last[1]; ch; ch = ch->next) DBG("big %p %p %p %d", (byte *)ch - ch->size, ch, ch + 1, ch->size); #endif int r = random_max(100); if ((r -= 1) < 0) { DBG("flush"); mp_flush(mp); n = m = 0; } else if ((r -= 1) < 0) { DBG("delete & new"); mp_delete(mp); if (random_max(2)) mp = mp_new(random_max(0x1000) + 1); else mp = &mp_static, mp_init(mp, random_max(512) + 1); n = m = 0; } else if (n < max && (r -= 30) < 0) { len[n] = random_max(0x2000); DBG("alloc(%u)", len[n]); align[n] = random_max(2) ? CPU_STRUCT_ALIGN : 1; ptr[n] = (align[n] == 1) ? mp_alloc_fast_noalign(mp, len[n]) : mp_alloc_fast(mp, len[n]); DBG(" -> (%p)", ptr[n]); fill(ptr[n], len[n], n); n++; can_realloc = 1; } else if (n < max && (r -= 20) < 0) { len[n] = random_max(0x2000); DBG("start(%u)", len[n]); align[n] = random_max(2) ? CPU_STRUCT_ALIGN : 1; ptr[n] = (align[n] == 1) ? mp_start_fast_noalign(mp, len[n]) : mp_start_fast(mp, len[n]); DBG(" -> (%p)", ptr[n]); fill(ptr[n], len[n], n); n++; can_realloc = 1; goto grow; } else if (can_realloc && n && (r -= 10) < 0) { if (mp_open(mp, ptr[n - 1]) != len[n - 1]) ASSERT(0); grow: { uint k = n - 1; for (uint i = random_max(4); i--; ) { uint l = len[k]; len[k] = random_max(0x2000); DBG("grow(%u)", len[k]); ptr[k] = mp_grow(mp, len[k]); DBG(" -> (%p)", ptr[k]); check(ptr[k], MIN(l, len[k]), k, align[k]); fill(ptr[k], len[k], k); } mp_end(mp, ptr[k] + len[k]); } } else if (can_realloc && n && (r -= 20) < 0) { uint i = n - 1, l = len[i]; DBG("realloc(%p, %u)", ptr[i], len[i]); ptr[i] = mp_realloc(mp, ptr[i], len[i] = random_max(0x2000)); DBG(" -> (%p, %u)", ptr[i], len[i]); check(ptr[i], MIN(len[i], l), i, align[i]); fill(ptr[i], len[i], i); } else if (m < max && (r -= 5) < 0) { DBG("push(%u)", m); num[m] = n; state[m++] = mp_push(mp); can_realloc = 0; } else if (m && (r -= 2) < 0) { m--; DBG("pop(%u)", m); mp_pop(mp); n = num[m]; can_realloc = 0; } else if (m && (r -= 1) < 0) { uint i = random_max(m); DBG("restore(%u)", i); mp_restore(mp, state[i]); n = num[m = i]; can_realloc = 0; } else if (can_realloc && n && (r -= 5) < 0) ASSERT(mp_size(mp, ptr[n - 1]) == len[n - 1]); else { struct mempool_stats stats; mp_stats(mp, &stats); } } mp_delete(mp); return 0; } #endif