/* * Generic MODBUS Library for STM32 * * (c) 2019--2023 Martin Mareš */ #include "util.h" #include "modbus.h" #include "modbus-proto.h" #include #include #include #include #include #include #include /*** Configuration ***/ // You should set the following parameters in config.h // USART (pins are expected to be configured by the caller) // #define MODBUS_USART USART2 // #define MODBUS_NVIC_USART_IRQ NVIC_USART2_IRQ // #define MODBUS_USART_ISR usart2_isr // GPIO pin for transmitter enable (pins is expected to be configured by the caller) // #define MODBUS_TXEN_GPIO_PORT GPIOA // #define MODBUS_TXEN_GPIO_PIN GPIO1 // Timer // #define MODBUS_TIMER TIM2 // #define MODBUS_NVIC_TIMER_IRQ NVIC_TIM2_IRQ // #define MODBUS_TIMER_ISR tim2_isr // Slave address we are responding at // #define MODBUS_OUR_ADDRESS 42 // Baud rate #ifndef MODBUS_BAUD_RATE #define MODBUS_BAUD_RATE 19200 #endif // CPU clock frequency // #define CPU_CLOCK_MHZ 72 // Receive buffer size (standard specifies 256 bytes, you can make it shorter if necessary) #ifndef MODBUS_RX_BUFSIZE #define MODBUS_RX_BUFSIZE 256 #endif // Transmit buffer size (standard specifies 256 bytes, you can make it shorter if necessary) #ifndef MODBUS_TX_BUFSIZE #define MODBUS_TX_BUFSIZE 256 #endif // Receive timeout in microseconds #ifndef MODBUS_RX_TIMEOUT #if MODBUS_BAUD_RATE <= 19200 // For low baud rates, the standard specifies timeout of 1.5 character times // (1 character = start bit + 8 data bits + parity bit + stop bit = 11 bits) #define MODBUS_RX_TIMEOUT (1000000*11*3/2/MODBUS_BAUD_RATE) #else // For high rates, the timeout is fixed to 750 μs #define MODBUS_RX_TIMEOUT 750 #endif #endif // Inter-frame gap in microseconds #ifndef MODBUS_RX_GAP #if MODBUS_BAUD_RATE <= 19200 // For low baud rates, the standard specifies 3.5 character times #define MODBUS_RX_GAP (1000000*11*7/2/MODBUS_BAUD_RATE) #else // For high rates, the gap is fixed to 1750 μs #define MODBUS_RX_GAP 1750 #endif #endif // Debugging // #define MODBUS_DEBUG // #define MODBUS_DEBUG_ISR #ifdef MODBUS_DEBUG #define DEBUG debug_printf #else #define DEBUG(xxx, ...) do { } while (0) #endif #ifdef MODBUS_DEBUG_ISR #define DEBUG_ISR(c) debug_putc(c) #else #define DEBUG_ISR(c) do { } while (0) #endif /*** State ***/ enum mb_state { STATE_RX, STATE_RX_DONE, STATE_PROCESSING, STATE_GAP, STATE_TX, STATE_TX_LAST, STATE_TX_DONE, }; static byte rx_buf[MODBUS_RX_BUFSIZE]; static u16 rx_size; static byte rx_bad; static byte state; // STATE_xxx static byte *rx_frame; static byte *rx_frame_end; static byte tx_buf[MODBUS_TX_BUFSIZE]; static u16 tx_size; static u16 tx_pos; static byte pending_error; static bool check_frame(void); static void process_frame(void); /*** Low-level layer ***/ static void rx_init(void) { DEBUG_ISR('<'); state = STATE_RX; rx_size = 0; rx_bad = 0; usart_set_mode(MODBUS_USART, USART_MODE_RX); usart_enable_rx_interrupt(MODBUS_USART); modbus_ready_hook(); } static void rx_done(void) { DEBUG_ISR('>'); state = STATE_RX_DONE; usart_disable_rx_interrupt(MODBUS_USART); } static void tx_gap_init(void) { timer_set_period(MODBUS_TIMER, (MODBUS_RX_GAP > MODBUS_RX_TIMEOUT ? MODBUS_RX_GAP - MODBUS_RX_TIMEOUT : 1)); timer_generate_event(MODBUS_TIMER, TIM_EGR_UG); timer_enable_counter(MODBUS_TIMER); } static void tx_init(void) { DEBUG_ISR('['); state = STATE_TX; tx_pos = 0; gpio_set(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN); usart_set_mode(MODBUS_USART, USART_MODE_TX); usart_enable_tx_interrupt(MODBUS_USART); } static void tx_done(void) { state = STATE_TX_DONE; // usart_disable_tx_interrupt(MODBUS_USART); // Already done by irq handler gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN); } void modbus_init(void) { DEBUG("MODBUS: Init\n"); timer_set_prescaler(MODBUS_TIMER, CPU_CLOCK_MHZ-1); // 1 tick = 1 μs timer_set_mode(MODBUS_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_DOWN); timer_update_on_overflow(MODBUS_TIMER); timer_disable_preload(MODBUS_TIMER); timer_one_shot_mode(MODBUS_TIMER); timer_enable_irq(MODBUS_TIMER, TIM_DIER_UIE); nvic_enable_irq(MODBUS_NVIC_TIMER_IRQ); gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN); usart_set_baudrate(MODBUS_USART, MODBUS_BAUD_RATE); usart_set_databits(MODBUS_USART, 9); usart_set_stopbits(MODBUS_USART, USART_STOPBITS_1); usart_set_parity(MODBUS_USART, USART_PARITY_EVEN); usart_set_flow_control(MODBUS_USART, USART_FLOWCONTROL_NONE); rx_init(); nvic_enable_irq(MODBUS_NVIC_USART_IRQ); usart_enable(MODBUS_USART); } void MODBUS_USART_ISR(void) { u32 status = USART_SR(MODBUS_USART); if (status & USART_SR_RXNE) { uint ch = usart_recv(MODBUS_USART); if (state == STATE_RX) { if (status & (USART_SR_FE | USART_SR_ORE | USART_SR_NE)) { DEBUG_ISR('!'); rx_bad = 1; } else if (rx_size < MODBUS_RX_BUFSIZE) { DEBUG_ISR('.'); if (!rx_size) modbus_frame_start_hook(); rx_buf[rx_size++] = ch; } else { // Frame too long DEBUG_ISR('#'); rx_bad = 2; } timer_set_period(MODBUS_TIMER, MODBUS_RX_TIMEOUT); timer_generate_event(MODBUS_TIMER, TIM_EGR_UG); timer_enable_counter(MODBUS_TIMER); } } if (state == STATE_TX) { if (status & USART_SR_TXE) { if (tx_pos < tx_size) { usart_send(MODBUS_USART, tx_buf[tx_pos++]); DEBUG_ISR(':'); } else { // The transmitter is double-buffered, so at this moment, it is transmitting // the last byte of the frame. Wait until transfer is completed. usart_disable_tx_interrupt(MODBUS_USART); USART_CR1(MODBUS_USART) |= USART_CR1_TCIE; state = STATE_TX_LAST; DEBUG_ISR(']'); } } } else if (state == STATE_TX_LAST) { if (status & USART_SR_TC) { // Transfer of the last byte is complete. Release the bus. USART_CR1(MODBUS_USART) &= ~USART_CR1_TCIE; tx_done(); rx_init(); } } } void MODBUS_TIMER_ISR(void) { if (TIM_SR(MODBUS_TIMER) & TIM_SR_UIF) { TIM_SR(MODBUS_TIMER) &= ~TIM_SR_UIF; if (state == STATE_RX) rx_done(); else if (state == STATE_GAP) tx_init(); } } void modbus_loop(void) { if (state != STATE_RX_DONE) return; state = STATE_PROCESSING; if (!check_frame()) { rx_init(); return; } DEBUG("MODBUS: < dest=%02x func=%02x len=%u\n", rx_buf[0], rx_buf[1], rx_size); if (rx_buf[0] == MODBUS_OUR_ADDRESS) { // Frame addressed to us: process and reply tx_gap_init(); process_frame(); DEBUG("MODBUS: > status=%02x len=%u\n", tx_buf[1], tx_size); CM_ATOMIC_BLOCK() { if (TIM_CR1(MODBUS_TIMER) & TIM_CR1_CEN) { // The timer is still running, so let it handle the start of transmission. // Even if it expires just now, the interrupt is deferred. state = STATE_GAP; } } if (state == STATE_PROCESSING) { // Interrupt already expired, so fire up transmission from here. tx_init(); } } else if (rx_buf[0] == 0x00) { // Broadcast frame: process, but do not reply process_frame(); rx_init(); } else { // Somebody else's frame: discard rx_init(); } } /** CRC ***/ static const byte crc_hi[] = { 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40 }; static const byte crc_lo[] = { 0x00, 0xc0, 0xc1, 0x01, 0xc3, 0x03, 0x02, 0xc2, 0xc6, 0x06, 0x07, 0xc7, 0x05, 0xc5, 0xc4, 0x04, 0xcc, 0x0c, 0x0d, 0xcd, 0x0f, 0xcf, 0xce, 0x0e, 0x0a, 0xca, 0xcb, 0x0b, 0xc9, 0x09, 0x08, 0xc8, 0xd8, 0x18, 0x19, 0xd9, 0x1b, 0xdb, 0xda, 0x1a, 0x1e, 0xde, 0xdf, 0x1f, 0xdd, 0x1d, 0x1c, 0xdc, 0x14, 0xd4, 0xd5, 0x15, 0xd7, 0x17, 0x16, 0xd6, 0xd2, 0x12, 0x13, 0xd3, 0x11, 0xd1, 0xd0, 0x10, 0xf0, 0x30, 0x31, 0xf1, 0x33, 0xf3, 0xf2, 0x32, 0x36, 0xf6, 0xf7, 0x37, 0xf5, 0x35, 0x34, 0xf4, 0x3c, 0xfc, 0xfd, 0x3d, 0xff, 0x3f, 0x3e, 0xfe, 0xfa, 0x3a, 0x3b, 0xfb, 0x39, 0xf9, 0xf8, 0x38, 0x28, 0xe8, 0xe9, 0x29, 0xeb, 0x2b, 0x2a, 0xea, 0xee, 0x2e, 0x2f, 0xef, 0x2d, 0xed, 0xec, 0x2c, 0xe4, 0x24, 0x25, 0xe5, 0x27, 0xe7, 0xe6, 0x26, 0x22, 0xe2, 0xe3, 0x23, 0xe1, 0x21, 0x20, 0xe0, 0xa0, 0x60, 0x61, 0xa1, 0x63, 0xa3, 0xa2, 0x62, 0x66, 0xa6, 0xa7, 0x67, 0xa5, 0x65, 0x64, 0xa4, 0x6c, 0xac, 0xad, 0x6d, 0xaf, 0x6f, 0x6e, 0xae, 0xaa, 0x6a, 0x6b, 0xab, 0x69, 0xa9, 0xa8, 0x68, 0x78, 0xb8, 0xb9, 0x79, 0xbb, 0x7b, 0x7a, 0xba, 0xbe, 0x7e, 0x7f, 0xbf, 0x7d, 0xbd, 0xbc, 0x7c, 0xb4, 0x74, 0x75, 0xb5, 0x77, 0xb7, 0xb6, 0x76, 0x72, 0xb2, 0xb3, 0x73, 0xb1, 0x71, 0x70, 0xb0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9c, 0x5c, 0x5d, 0x9d, 0x5f, 0x9f, 0x9e, 0x5e, 0x5a, 0x9a, 0x9b, 0x5b, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4b, 0x8b, 0x8a, 0x4a, 0x4e, 0x8e, 0x8f, 0x4f, 0x8d, 0x4d, 0x4c, 0x8c, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; static u16 crc16(byte *buf, u16 len) { byte hi = 0xff, lo = 0xff; while (len--) { byte i = hi ^ *buf++; hi = lo ^ crc_hi[i]; lo = crc_lo[i]; } return (hi << 8 | lo); } /*** High-level layer ***/ static bool check_frame(void) { if (rx_bad) { // FIXME: Error counters? DEBUG("MODBUS: RX bad\n"); return false; } if (rx_size < 4) { // FIXME: Error counters? DEBUG("MODBUS: RX undersize\n"); return false; } u16 crc = crc16(rx_buf, rx_size - 2); u16 rx_crc = (rx_buf[rx_size-2] << 8) | rx_buf[rx_size-1]; if (crc != rx_crc) { // FIXME: Error counters? DEBUG("MODBUS: Bad CRC\n"); return false; } rx_frame = rx_buf + 1; rx_frame_end = rx_frame + rx_size - 2; return true; } static uint read_remains(void) { return rx_frame_end - rx_frame; } static byte read_byte(void) { return *rx_frame++; } static u16 read_u16(void) { byte hi = *rx_frame++; byte lo = *rx_frame++; return (hi << 8) | lo; } static void write_byte(byte v) { tx_buf[tx_size++] = v; } static void write_u16(u16 v) { write_byte(v >> 8); write_byte(v); } static bool body_fits(uint body_len) { // body_len excludes slave address, function code, and CRC return (2 + body_len + 2 <= MODBUS_TX_BUFSIZE); } static void report_error(byte code) { // Discard the partially constructed body of the reply and rewrite the header tx_buf[1] |= 0x80; tx_buf[2] = code; tx_size = 3; } static void func_read_bits(bool coils) { if (read_remains() < 4) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 start = read_u16(); u16 count = read_u16(); uint bytes = (count+7) / 8; if (!body_fits(1 + bytes)) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < count; i++) if (!(coils ? modbus_check_coil : modbus_check_discrete_input)(start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); write_byte(bytes); for (u16 i = 0; i < bytes; i++) { byte b = 0; for (byte j = 0; j < 8 && 8*i + j < count; j++) { uint addr = start + 8*i + j; if ((coils ? modbus_get_coil : modbus_get_discrete_input)(addr)) b |= 1 << j; } write_byte(b); } } static void func_read_registers(byte holding) { if (read_remains() < 4) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 start = read_u16(); u16 count = read_u16(); uint bytes = 2*count; if (!body_fits(1 + bytes)) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < count; i++) if (!(holding ? modbus_check_holding_register : modbus_check_input_register)(start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); // FIXME: Reporting of slave failures? write_byte(bytes); for (u16 i = 0; i < count; i++) write_u16((holding ? modbus_get_holding_register : modbus_get_input_register)(start + i)); } static void func_write_single_coil(void) { if (read_remains() < 4) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 addr = read_u16(); u16 value = read_u16(); if (!modbus_check_coil(addr)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); if (value != 0x0000 && value != 0xff00) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); modbus_set_coil(addr, value); write_u16(addr); write_u16(value); } static void func_write_single_register(void) { if (read_remains() < 4) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 addr = read_u16(); u16 value = read_u16(); if (!modbus_check_holding_register(addr)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); modbus_set_holding_register(addr, value); write_u16(addr); write_u16(value); } static void func_write_multiple_coils(void) { if (read_remains() < 5) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 start = read_u16(); u16 count = read_u16(); byte bytes = read_byte(); if (read_remains() < bytes || bytes != (count+7) / 8) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < count; i++) if (!modbus_check_coil(start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); for (u16 i = 0; i < count; i++) modbus_set_coil(start + i, rx_frame[i/8] & (1U << (i%8))); write_u16(start); write_u16(count); } static void func_write_multiple_registers(void) { if (read_remains() < 5) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 start = read_u16(); u16 count = read_u16(); byte bytes = read_byte(); if (read_remains() < bytes || bytes != 2*count) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < count; i++) if (!modbus_check_holding_register(start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); for (u16 i = 0; i < count; i++) modbus_set_holding_register(start + i, read_u16()); write_u16(start); write_u16(count); } static void func_mask_write_register(void) { if (read_remains() < 6) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 addr = read_u16(); u16 and_mask = read_u16(); u16 or_mask = read_u16(); if (!modbus_check_holding_register(addr)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); u16 reg = modbus_get_holding_register(addr); reg = (reg & and_mask) | (or_mask & ~and_mask); modbus_set_holding_register(addr, reg); write_u16(addr); write_u16(and_mask); write_u16(or_mask); } static void func_read_write_multiple_registers(void) { if (read_remains() < 9) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); u16 read_start = read_u16(); u16 read_count = read_u16(); u16 write_start = read_u16(); u16 write_count = read_u16(); byte write_bytes = read_byte(); if (read_remains() < write_bytes || write_bytes != 2*write_count) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < read_count; i++) if (!modbus_check_holding_register(read_start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); for (u16 i = 0; i < write_count; i++) if (!modbus_check_holding_register(write_start + i)) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); byte read_bytes = 2*write_count; if (!body_fits(1 + read_bytes)) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); for (u16 i = 0; i < write_count; i++) modbus_set_holding_register(write_start + i, read_u16()); write_byte(read_bytes); for (u16 i = 0; i < read_count; i++) modbus_get_holding_register(read_start + i); } static void func_encapsulated_interface_transport(void) { if (read_remains() < 3 || read_byte() != MODBUS_EIT_READ_DEVICE_IDENT) return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); byte action = read_byte(); byte id = read_byte(); byte range_min, range_max; switch (action) { case 1: // Streaming access to basic identification range_min = MODBUS_ID_VENDOR_NAME; range_max = MODBUS_ID_MAJOR_MINOR_REVISION; break; case 2: // Streaming access to regular identification range_min = MODBUS_ID_VENDOR_URL; range_max = MODBUS_ID_USER_APP_NAME; break; case 4: // Individual access if (id >= MODBUS_ID_MAX || !modbus_id_strings[id]) return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS); range_min = range_max = id; break; default: return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE); } if (action != 4) { if (id < range_min || id > range_max) id = range_min; } write_byte(0x0e); // Repeat a part of the request write_byte(action); // Conformity level if (modbus_id_strings[MODBUS_ID_VENDOR_URL] || modbus_id_strings[MODBUS_ID_PRODUCT_NAME] || modbus_id_strings[MODBUS_ID_USER_APP_NAME]) write_byte(0x82); // Regular identification, both stream and individual access supported else write_byte(0x81); // Basic identification only u16 more_follows_at = tx_size; write_byte(0); // More follows: so far not write_byte(0); // Next object ID: so far none write_byte(0); // Number of objects for (id = range_min; id <= range_max; id++) { if (modbus_id_strings[id]) { byte len = strlen(modbus_id_strings[id]); byte remains = MODBUS_TX_BUFSIZE - 4 - tx_size; // 2 for CRC, 2 for object header if (len > remains) { // If it is the only object, cut it if (!tx_buf[more_follows_at + 2]) len = remains; else { // More follows, report the next ID tx_buf[more_follows_at] = 0xff; tx_buf[more_follows_at + 1] = id; break; } } tx_buf[more_follows_at + 2] ++; write_byte(id); write_byte(len); memcpy(tx_buf + tx_size, modbus_id_strings[id], len); tx_size += len; } } } static void process_frame(void) { byte func = read_byte(); // Prepare reply frame tx_buf[0] = MODBUS_OUR_ADDRESS; tx_buf[1] = rx_buf[1]; tx_size = 2; pending_error = 0; switch (func) { case MODBUS_FUNC_READ_COILS: func_read_bits(true); break; case MODBUS_FUNC_READ_DISCRETE_INPUTS: func_read_bits(false); break; case MODBUS_FUNC_READ_HOLDING_REGISTERS: func_read_registers(true); break; case MODBUS_FUNC_READ_INPUT_REGISTERS: func_read_registers(false); break; case MODBUS_FUNC_WRITE_SINGLE_COIL: func_write_single_coil(); break; case MODBUS_FUNC_WRITE_SINGLE_REGISTER: func_write_single_register(); break; case MODBUS_FUNC_WRITE_MULTIPLE_COILS: func_write_multiple_coils(); break; case MODBUS_FUNC_WRITE_MULTIPLE_REGISTERS: func_write_multiple_registers(); break; case MODBUS_FUNC_MASK_WRITE_REGISTER: func_mask_write_register(); break; case MODBUS_FUNC_READ_WRITE_MULTIPLE_REGISTERS: func_read_write_multiple_registers(); break; case MODBUS_FUNC_ENCAPSULATED_INTERFACE_TRANSPORT: func_encapsulated_interface_transport(); break; default: report_error(MODBUS_ERR_ILLEGAL_FUNCTION); } // Is there a deferred error pending? if (pending_error) report_error(pending_error); // Finish reply frame write_u16(crc16(tx_buf, tx_size)); } void modbus_slave_error(void) { pending_error = MODBUS_ERR_SLAVE_DEVICE_FAILURE; } bool modbus_is_idle(void) { return state == STATE_RX && !rx_size; }