Workshop o mikrokontrolérech na SKSP 2024.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

278 lines
7.0 KiB

/*
* Image Library -- Image scaling algorithms
*
* (c) 2006 Pavel Charvat <pchar@ucw.cz>
*
* This software may be freely distributed and used according to the terms
* of the GNU Lesser General Public License.
*/
#undef LOCAL_DEBUG
#include <ucw/lib.h>
#include <images/images.h>
#include <images/error.h>
#include <images/math.h>
#include <string.h>
#ifdef __SSE2__
#include <emmintrin.h>
#endif
#define LINEAR_INTERPOLATE(a, b, t) (((int)((a) << 16) + (int)(t) * ((int)(b) - (int)(a)) + 0x8000) >> 16)
/* Generate optimized code for various pixel formats */
#define IMAGE_SCALE_PREFIX(x) image_scale_1_##x
#define IMAGE_SCALE_PIXEL_SIZE 1
#include <images/scale-gen.h>
#define IMAGE_SCALE_PREFIX(x) image_scale_2_##x
#define IMAGE_SCALE_PIXEL_SIZE 2
#include <images/scale-gen.h>
#define IMAGE_SCALE_PREFIX(x) image_scale_3_##x
#define IMAGE_SCALE_PIXEL_SIZE 3
#include <images/scale-gen.h>
#define IMAGE_SCALE_PREFIX(x) image_scale_4_##x
#define IMAGE_SCALE_PIXEL_SIZE 4
#include <images/scale-gen.h>
/* Simple "nearest neighbour" algorithm */
static void
image_scale_nearest_xy(struct image *dest, struct image *src)
{
switch (src->pixel_size)
{
case 1:
image_scale_1_nearest_xy(dest, src);
return;
case 2:
image_scale_2_nearest_xy(dest, src);
return;
case 3:
image_scale_3_nearest_xy(dest, src);
return;
case 4:
image_scale_4_nearest_xy(dest, src);
return;
default:
ASSERT(0);
}
}
static inline void
image_scale_nearest_x(struct image *dest, struct image *src)
{
image_scale_nearest_xy(dest, src);
}
static void
image_scale_nearest_y(struct image *dest, struct image *src)
{
uint y_inc = (src->rows << 16) / dest->rows;
uint y_pos = y_inc >> 1;
byte *dest_pos = dest->pixels;
for (uint row_counter = dest->rows; row_counter--; )
{
byte *src_pos = src->pixels + (y_pos >> 16) * src->row_size;
y_pos += y_inc;
memcpy(dest_pos, src_pos, dest->row_pixels_size);
dest_pos += dest->row_size;
}
}
/* Bilinear filter */
UNUSED static void
image_scale_linear_y(struct image *dest, struct image *src)
{
byte *dest_row = dest->pixels;
/* Handle problematic special case */
if (src->rows == 1)
{
for (uint y_counter = dest->rows; y_counter--; dest_row += dest->row_size)
memcpy(dest_row, src->pixels, src->row_pixels_size);
return;
}
/* Initialize the main loop */
uint y_inc = ((src->rows - 1) << 16) / (dest->rows - 1), y_pos = 0;
#ifdef __SSE2__
__m128i zero = _mm_setzero_si128();
#endif
/* Main loop */
for (uint y_counter = dest->rows; --y_counter; )
{
uint coef = y_pos & 0xffff;
byte *src_row_1 = src->pixels + (y_pos >> 16) * src->row_size;
byte *src_row_2 = src_row_1 + src->row_size;
uint i = 0;
#ifdef __SSE2__
/* SSE2 */
__m128i sse_coef = _mm_set1_epi16(coef >> 9);
for (; (int)i < (int)dest->row_pixels_size - 15; i += 16)
{
__m128i a2 = _mm_loadu_si128((__m128i *)(src_row_1 + i));
__m128i a1 = _mm_unpacklo_epi8(a2, zero);
a2 = _mm_unpackhi_epi8(a2, zero);
__m128i b2 = _mm_loadu_si128((__m128i *)(src_row_2 + i));
__m128i b1 = _mm_unpacklo_epi8(b2, zero);
b2 = _mm_unpackhi_epi8(b2, zero);
b1 = _mm_sub_epi16(b1, a1);
b2 = _mm_sub_epi16(b2, a2);
a1 = _mm_slli_epi16(a1, 7);
a2 = _mm_slli_epi16(a2, 7);
b1 = _mm_mullo_epi16(b1, sse_coef);
b2 = _mm_mullo_epi16(b2, sse_coef);
a1 = _mm_add_epi16(a1, b1);
a2 = _mm_add_epi16(a2, b2);
a1 = _mm_srli_epi16(a1, 7);
a2 = _mm_srli_epi16(a2, 7);
a1 = _mm_packus_epi16(a1, a2);
_mm_storeu_si128((__m128i *)(dest_row + i), a1);
}
#endif
/* Unrolled loop using general-purpose registers */
for (; (int)i < (int)dest->row_pixels_size - 3; i += 4)
{
dest_row[i + 0] = LINEAR_INTERPOLATE(src_row_1[i + 0], src_row_2[i + 0], coef);
dest_row[i + 1] = LINEAR_INTERPOLATE(src_row_1[i + 1], src_row_2[i + 1], coef);
dest_row[i + 2] = LINEAR_INTERPOLATE(src_row_1[i + 2], src_row_2[i + 2], coef);
dest_row[i + 3] = LINEAR_INTERPOLATE(src_row_1[i + 3], src_row_2[i + 3], coef);
}
/* Remaining columns */
for (; i < dest->row_pixels_size; i++)
dest_row[i] = LINEAR_INTERPOLATE(src_row_1[i], src_row_2[i], coef);
dest_row += dest->row_size;
y_pos += y_inc;
}
/* Always copy the last row - faster and also handle "y_pos == dest->rows * 0x10000" overflow */
memcpy(dest_row, src->pixels + src->image_size - src->row_size, src->row_pixels_size);
}
/* Box filter */
static void
image_scale_downsample_xy(struct image *dest, struct image *src)
{
switch (src->pixel_size)
{
case 1:
image_scale_1_downsample_xy(dest, src);
return;
case 2:
image_scale_2_downsample_xy(dest, src);
return;
case 3:
image_scale_3_downsample_xy(dest, src);
return;
case 4:
image_scale_4_downsample_xy(dest, src);
return;
default:
ASSERT(0);
}
}
/* General routine
* FIXME: customizable; implement at least bilinear and bicubic filters */
int
image_scale(struct image_context *ctx, struct image *dest, struct image *src)
{
if ((src->flags & IMAGE_PIXEL_FORMAT) != (dest->flags & IMAGE_PIXEL_FORMAT))
{
IMAGE_ERROR(ctx, IMAGE_ERROR_INVALID_PIXEL_FORMAT, "Different pixel formats not supported.");
return 0;
}
if (dest->cols == src->cols)
{
if (dest->rows == src->rows)
{
/* No scale, copy only */
image_scale_nearest_y(dest, src);
return 1;
}
else if (dest->rows < src->rows)
{
/* Downscale vertically */
image_scale_downsample_xy(dest, src);
return 1;
}
else
{
/* Upscale vertically */
image_scale_nearest_y(dest, src);
return 1;
}
}
else if (dest->rows == src->rows)
{
if (dest->cols < src->cols)
{
/* Downscale horizontally */
image_scale_downsample_xy(dest, src);
return 1;
}
else
{
/* Upscale horizontally */
image_scale_nearest_x(dest, src);
return 1;
}
}
else
{
if (dest->cols <= src->cols && dest->rows <= src->rows)
{
/* Downscale in both dimensions */
image_scale_downsample_xy(dest, src);
return 1;
}
else
{
image_scale_nearest_xy(dest, src);
return 1;
}
}
}
void
image_dimensions_fit_to_box(uint *cols, uint *rows, uint max_cols, uint max_rows, uint upsample)
{
ASSERT(image_dimensions_valid(*cols, *rows));
ASSERT(image_dimensions_valid(max_cols, max_rows));
if (*cols <= max_cols && *rows <= max_rows)
{
if (!upsample)
return;
if (max_cols * *rows > max_rows * *cols)
{
*cols = *cols * max_rows / *rows;
*cols = MIN(*cols, max_cols);
*rows = max_rows;
}
else
{
*rows = *rows * max_cols / *cols;
*rows = MIN(*rows, max_rows);
*cols = max_cols;
}
}
else if (*cols <= max_cols)
goto down_cols;
else if (*rows <= max_rows || max_rows * *cols > max_cols * *rows)
goto down_rows;
down_cols:
*cols = *cols * max_rows / *rows;
*cols = MAX(*cols, 1);
*rows = max_rows;
return;
down_rows:
*rows = *rows * max_cols / *cols;
*rows = MAX(*rows, 1);
*cols = max_cols;
}