Workshop o mikrokontrolérech na SKSP 2024.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

633 lines
24 KiB

/*
* UCW Library -- Configuration files
*
* (c) 2001--2006 Robert Spalek <robert@ucw.cz>
* (c) 2003--2014 Martin Mares <mj@ucw.cz>
* (c) 2014 Pavel Charvat <pchar@ucw.cz>
*
* This software may be freely distributed and used according to the terms
* of the GNU Lesser General Public License.
*/
#ifndef _UCW_CONF_H
#define _UCW_CONF_H
#include <ucw/clists.h>
#include <ucw/gary.h>
#ifdef CONFIG_UCW_CLEAN_ABI
#define cf_close_group ucw_cf_close_group
#define cf_declare_rel_section ucw_cf_declare_rel_section
#define cf_declare_section ucw_cf_declare_section
#define cf_delete_context ucw_cf_delete_context
#define cf_dump_sections ucw_cf_dump_sections
#define cf_find_item ucw_cf_find_item
#define cf_get_pool ucw_cf_get_pool
#define cf_init_section ucw_cf_init_section
#define cf_journal_block ucw_cf_journal_block
#define cf_journal_commit_transaction ucw_cf_journal_commit_transaction
#define cf_journal_new_transaction ucw_cf_journal_new_transaction
#define cf_journal_rollback_transaction ucw_cf_journal_rollback_transaction
#define cf_load ucw_cf_load
#define cf_malloc ucw_cf_malloc
#define cf_malloc_zero ucw_cf_malloc_zero
#define cf_modify_item ucw_cf_modify_item
#define cf_new_context ucw_cf_new_context
#define cf_open_group ucw_cf_open_group
#define cf_parse_double ucw_cf_parse_double
#define cf_parse_int ucw_cf_parse_int
#define cf_parse_ip ucw_cf_parse_ip
#define cf_parse_u64 ucw_cf_parse_u64
#define cf_printf ucw_cf_printf
#define cf_reload ucw_cf_reload
#define cf_revert ucw_cf_revert
#define cf_set ucw_cf_set
#define cf_set_journalling ucw_cf_set_journalling
#define cf_strdup ucw_cf_strdup
#define cf_switch_context ucw_cf_switch_context
#endif
struct mempool;
/***
* [[conf_ctxt]]
* Configuration contexts
* ~~~~~~~~~~~~~~~~~~~~~~
*
* The state of the configuration parser is stored within a configuration context.
* One such context is automatically created during initialization of the library
* and you need not care about more, as long as you use a single configuration file.
*
* In full generality, you can define as many contexts as you wish and switch
* between them. Each thread has its own pointer to the current context, which
* must not be shared with other threads.
***/
/** Create a new configuration context. **/
struct cf_context *cf_new_context(void);
/**
* Free a configuration context. The context must not be set as current
* for any thread, nor can it be the default context.
*
* All configuration settings made within the context are rolled back
* (except when journalling is turned off). All memory allocated on behalf
* of the context is freed, which includes memory obtained by calls to
* @cf_malloc().
**/
void cf_delete_context(struct cf_context *cc);
/**
* Make the given configuration context current and return the previously
* active context. Both the new and the old context may be NULL.
**/
struct cf_context *cf_switch_context(struct cf_context *cc);
/***
* [[conf_load]]
* Safe configuration loading
* ~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* These functions can be used to to safely load or reload configuration.
*/
/**
* Load configuration from @file.
* Returns a non-zero value upon error. In that case, all changes to the
* configuration specified in the file are undone.
**/
int cf_load(const char *file);
/**
* Reload configuration from @file, replace the old one.
* If @file is NULL, reload all loaded configuration files and re-apply
* bits of configuration passed to @cf_set().
* Returns a non-zero value upon error. In that case, all configuration
* settings are rolled back to the state before calling this function.
**/
int cf_reload(const char *file);
/**
* Parse some part of configuration passed in @string.
* The syntax is the same as in the <<config:,configuration file>>.
* Returns a non-zero value upon error. In that case, all changes to the
* configuration specified by the already executed parts of the string
* are undone.
**/
int cf_set(const char *string);
/**
* Sometimes, the configuration is split to multiple files and when only
* some of the are loaded, the settings are not consistent -- for example,
* they might have been rejected by a commit hook, because a mandatory setting
* is missing.
*
* This function opens a configuration group, in which multiple files can be
* loaded and all commit hooks are deferred until the group is closed.
**/
void cf_open_group(void);
/**
* Close a group opened by @cf_open_group(). Returns a non-zero value upon error,
* which usually means that a commit hook has failed.
**/
int cf_close_group(void);
/**
* Return all configuration items to their initial state before loading the
* configuration file. If journalling is disabled, it does nothing.
**/
void cf_revert(void);
/*** === Data types [[conf_types]] ***/
enum cf_class { /** Class of the configuration item. **/
CC_END, // end of list
CC_STATIC, // single variable or static array
CC_DYNAMIC, // dynamically allocated array
CC_PARSER, // arbitrary parser function
CC_SECTION, // section appears exactly once
CC_LIST, // list with 0..many nodes
CC_BITMAP // of up to 32 items
};
enum cf_type { /** Type of a single value. **/
CT_INT, CT_U64, CT_DOUBLE, // number types
CT_IP, // IP address
CT_STRING, // string type
CT_LOOKUP, // in a string table
CT_USER, // user-defined type (obsolete)
CT_XTYPE // extended type
};
struct fastbuf;
/**
* A parser function gets an array of (strdup'ed) strings and a pointer with
* the customized information (most likely the target address). It can store
* the parsed value anywhere in any way it likes, however it must first call
* @cf_journal_block() on the overwritten memory block. It returns an error
* message or NULL if everything is all right.
**/
typedef char *cf_parser(uint number, char **pars, void *ptr);
/**
* A parser function for user-defined types gets a string and a pointer to
* the destination variable. It must store the value within [ptr,ptr+size),
* where size is fixed for each type. It should not call @cf_journal_block().
**/
typedef char *cf_parser1(char *string, void *ptr);
/**
* An init- or commit-hook gets a pointer to the section or NULL if this
* is the global section. It returns an error message or NULL if everything
* is all right. The init-hook should fill in default values (needed for
* dynamically allocated nodes of link lists or for filling global variables
* that are run-time dependent). The commit-hook should perform sanity
* checks and postprocess the parsed values. Commit-hooks must call
* @cf_journal_block() too. Caveat! init-hooks for static sections must not
* use @cf_malloc() but normal <<memory:xmalloc()>>.
**/
typedef char *cf_hook(void *ptr);
/**
* Dumps the contents of a variable of a user-defined type.
**/
typedef void cf_dumper1(struct fastbuf *fb, void *ptr);
/**
* Similar to init-hook, but it copies attributes from another list node
* instead of setting the attributes to default values. You have to provide
* it if your node contains parsed values and/or sub-lists.
**/
typedef char *cf_copier(void *dest, void *src);
struct cf_user_type { /** Structure to store information about user-defined variable type. **/
uint size; // of the parsed attribute
char *name; // name of the type (for dumping)
cf_parser1 *parser; // how to parse it
cf_dumper1 *dumper; // how to dump the type
};
struct cf_section;
struct cf_item { /** Single configuration item. **/
const char *name; // case insensitive
int number; // length of an array or #parameters of a parser (negative means at most)
void *ptr; // pointer to a global variable or an offset in a section
union cf_union {
struct cf_section *sec; // declaration of a section or a list
cf_parser *par; // parser function
const char * const *lookup; // NULL-terminated sequence of allowed strings for lookups
struct cf_user_type *utype; // specification of the user-defined type (obsolete)
const struct xtype *xtype; // specification of the extended type
} u;
enum cf_class cls:16; // attribute class
enum cf_type type:16; // type of a static or dynamic attribute
};
struct cf_section { /** A section. **/
uint size; // 0 for a global block, sizeof(struct) for a section
cf_hook *init; // fills in default values (no need to bzero)
cf_hook *commit; // verifies parsed data (optional)
cf_copier *copy; // copies values from another instance (optional, no need to copy basic attributes)
struct cf_item *cfg; // CC_END-terminated array of items
uint flags; // for internal use only
};
/***
* [[conf_macros]]
* Convenience macros
* ~~~~~~~~~~~~~~~~~~
*
* You could create the structures manually, but you can use these macros to
* save some typing.
*/
/***
* Declaration of <<struct_cf_section,`cf_section`>>
* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*
* These macros can be used to configure the <<struct_cf_section,`cf_section`>>
* structure.
***/
/**
* Data type of a section.
* If you store the section into a structure, use this macro.
*
* Storing a section into a structure is useful mostly when you may have multiple instances of the
* section (eg. <<conf_multi,array or list>>).
*
* Example:
*
* struct list_node {
* cnode n; // This one is for the list itself
* char *name;
* uint value;
* };
*
* static struct clist nodes;
*
* static struct cf_section node = {
* CF_TYPE(struct list_node),
* CF_ITEMS {
* CF_STRING("name", PTR_TO(struct list_node, name)),
* CF_UINT("value", PTR_TO(struct list_node, value)),
* CF_END
* }
* };
*
* static struct cf_section section = {
* CF_LIST("node", &nodes, &node),
* CF_END
* };
*
* You could use <<def_CF_STATIC,`CF_STATIC`>> or <<def_CF_DYNAMIC,`CF_DYNAMIC`>>
* macros to create arrays.
*/
#define CF_TYPE(s) .size = sizeof(s)
/**
* An init <<hooks,hook>>.
* You can use this to initialize dynamically allocated items (for a dynamic array or list).
* The hook returns an error message or NULL if everything was OK.
*/
#define CF_INIT(f) .init = (cf_hook*) f
/**
* A commit <<hooks,hook>>.
* You can use this one to check sanity of loaded data and postprocess them.
* You must call @cf_journal_block() if you change anything.
*
* Return error message or NULL if everything went OK.
**/
#define CF_COMMIT(f) .commit = (cf_hook*) f
/**
* A <<hooks,copy function>>.
* You need to provide one for too complicated sections where a memcpy is not
* enough to copy it properly. It happens, for example, when you have a dynamically
* allocated section containing a list of other sections.
*
* You return an error message or NULL if you succeed.
**/
#define CF_COPY(f) .copy = (cf_copier*) f /** **/
#define CF_ITEMS .flags = 0, .cfg = ( struct cf_item[] ) /** List of sub-items. **/
#define CF_END { .cls = CC_END } /** End of the structure. **/
/***
* Declaration of a configuration item
* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*
* Each of these describe single <<struct_cf_item,configuration item>>. They are mostly
* for internal use, do not use them directly unless you really know what you are doing.
***/
/**
* Static array of items.
* Expects you to allocate the memory and provide pointer to it.
**/
#define CF_STATIC(n,p,T,t,c) { .cls = CC_STATIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t*) }
/**
* Dynamic array of items.
* Expects you to provide pointer to your pointer to data and it will allocate new memory for it
* and set your pointer to it.
**/
#define CF_DYNAMIC(n,p,T,t,c) { .cls = CC_DYNAMIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t**) }
#define CF_PARSER(n,p,f,c) { .cls = CC_PARSER, .name = n, .number = c, .ptr = p, .u.par = (cf_parser*) f } /** A low-level parser. **/
#define CF_SECTION(n,p,s) { .cls = CC_SECTION, .name = n, .number = 1, .ptr = p, .u.sec = s } /** A sub-section. **/
#define CF_LIST(n,p,s) { .cls = CC_LIST, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,clist*), .u.sec = s } /** A list with sub-items. **/
#define CF_BITMAP_INT(n,p) { .cls = CC_BITMAP, .type = CT_INT, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*) } /** A bitmap. **/
#define CF_BITMAP_LOOKUP(n,p,t) { .cls = CC_BITMAP, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*), .u.lookup = t } /** A bitmap with named bits. **/
/***
* Basic configuration items
* ^^^^^^^^^^^^^^^^^^^^^^^^^
*
* They describe basic data types used in the configuration. This should be enough for
* most real-life purposes.
*
* The parameters are as follows:
*
* * @n -- name of the item.
* * @p -- pointer to the variable where it shall be stored.
* * @c -- count.
**/
#define CF_INT(n,p) CF_STATIC(n,p,INT,int,1) /** Single `int` value. **/
#define CF_INT_ARY(n,p,c) CF_STATIC(n,p,INT,int,c) /** Static array of integers. **/
#define CF_INT_DYN(n,p,c) CF_DYNAMIC(n,p,INT,int,c) /** Dynamic array of integers. **/
#define CF_UINT(n,p) CF_STATIC(n,p,INT,uint,1) /** Single `uint` (`unsigned`) value. **/
#define CF_UINT_ARY(n,p,c) CF_STATIC(n,p,INT,uint,c) /** Static array of unsigned integers. **/
#define CF_UINT_DYN(n,p,c) CF_DYNAMIC(n,p,INT,uint,c) /** Dynamic array of unsigned integers. **/
#define CF_U64(n,p) CF_STATIC(n,p,U64,u64,1) /** Single unsigned 64bit integer (`u64`). **/
#define CF_U64_ARY(n,p,c) CF_STATIC(n,p,U64,u64,c) /** Static array of u64s. **/
#define CF_U64_DYN(n,p,c) CF_DYNAMIC(n,p,U64,u64,c) /** Dynamic array of u64s. **/
#define CF_DOUBLE(n,p) CF_STATIC(n,p,DOUBLE,double,1) /** Single instance of `double`. **/
#define CF_DOUBLE_ARY(n,p,c) CF_STATIC(n,p,DOUBLE,double,c) /** Static array of doubles. **/
#define CF_DOUBLE_DYN(n,p,c) CF_DYNAMIC(n,p,DOUBLE,double,c) /** Dynamic array of doubles. **/
#define CF_IP(n,p) CF_STATIC(n,p,IP,u32,1) /** Single IPv4 address. **/
#define CF_IP_ARY(n,p,c) CF_STATIC(n,p,IP,u32,c) /** Static array of IP addresses. **/.
#define CF_IP_DYN(n,p,c) CF_DYNAMIC(n,p,IP,u32,c) /** Dynamic array of IP addresses. **/
/* FIXME: Backwards compatibility only, should not be used at is will be removed soon. */
#define CF_UNS CF_UINT
#define CF_UNS_ARY CF_UINT_ARY
#define CF_UNS_DYN CF_UINT_DYN
/**
* A string.
* You provide a pointer to a `char *` variable and it will fill it with
* dynamically allocated string. For example:
*
* static char *string = "Default string";
*
* static struct cf_section section = {
* CF_ITEMS {
* CF_STRING("string", &string),
* CF_END
* }
* };
**/
#define CF_STRING(n,p) CF_STATIC(n,p,STRING,char*,1)
#define CF_STRING_ARY(n,p,c) CF_STATIC(n,p,STRING,char*,c) /** Static array of strings. **/
#define CF_STRING_DYN(n,p,c) CF_DYNAMIC(n,p,STRING,char*,c) /** Dynamic array of strings. **/
/**
* One string out of a predefined set.
* You provide the set as an array of strings terminated by NULL (similar to @argv argument
* of main()) as the @t parameter.
*
* The configured variable (pointer to `int`) is set to index of the string.
* So, it works this way:
*
* static *strings[] = { "First", "Second", "Third", NULL };
*
* static int variable;
*
* static struct cf_section section = {
* CF_ITEMS {
* CF_LOOKUP("choice", &variable, strings),
* CF_END
* }
* };
*
* Now, if the configuration contains `choice "Second"`, `variable` will be set to 1.
**/
#define CF_LOOKUP(n,p,t) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
/**
* Static array of strings out of predefined set.
**/
#define CF_LOOKUP_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
/**
* Dynamic array of strings out of predefined set.
**/
#define CF_LOOKUP_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int**), .u.lookup = t }
/**
* A user-defined type.
* See <<custom_parser,creating custom parsers>> section if you want to know more.
**/
#define CF_USER(n,p,t) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = 1, .ptr = p, .u.utype = t }
/**
* Static array of user-defined types (all of the same type).
* See <<custom_parser,creating custom parsers>> section.
**/
#define CF_USER_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
/**
* Dynamic array of user-defined types.
* See <<custom_parser,creating custom parsers>> section.
**/
#define CF_USER_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
/**
* An extended type.
* See <<xtypes:,extended types>> if you want to know more.
**/
#define CF_XTYPE(n,p,t) { .cls = CC_STATIC, .type = CT_XTYPE, .name = n, .number = 1, .ptr = p, .u.xtype = t }
/**
* Static array of extended types (all of the same type).
* See <<xtypes:,extended types>>.
**/
#define CF_XTYPE_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_XTYPE, .name = n, .number = c, .ptr = p, .u.xtype = t }
/**
* Dynamic array of extended types.
* See <<xtypes:,extended types>>.
**/
#define CF_XTYPE_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_XTYPE, .name = n, .number = c, .ptr = p, .u.xtype = t }
/**
* Any number of dynamic array elements
**/
#define CF_ANY_NUM -0x7fffffff
#define DARY_LEN(a) GARY_SIZE(a) /** Length of an dynamic array. An alias for `GARY_SIZE`. **/
/***
* [[alloc]]
* Memory allocation
* ~~~~~~~~~~~~~~~~~
*
* Each configuration context has one or more <<mempool:,memory pools>>, where all
* data related to the configuration are stored.
*
* The following set of functions allocate from these pools. The allocated memory
* is valid as long as the current configuration (when the configuration file is
* reloaded or rolled back, or the context is deleted, it gets lost).
*
* Memory allocated from within custom parsers should be allocated from the pools.
*
* Please note that the pool is not guaranteed to exist before you call cf_load(),
* cf_set(), or cf_getopt() on the particular context.
***/
struct mempool *cf_get_pool(void); /** Return a pointer to the current configuration pool. **/
void *cf_malloc(uint size); /** Returns @size bytes of memory allocated from the current configuration pool. **/
void *cf_malloc_zero(uint size); /** Like @cf_malloc(), but zeroes the memory. **/
char *cf_strdup(const char *s); /** Copy a string into @cf_malloc()ed memory. **/
char *cf_printf(const char *fmt, ...) FORMAT_CHECK(printf,1,2); /** printf() into @cf_malloc()ed memory. **/
/***
* [[journal]]
* Undo journal
* ~~~~~~~~~~~~
*
* The configuration system uses a simple journaling mechanism, which makes
* it possible to undo changes to configuration. A typical example is loading
* of configuration by cf_load(): internally, it creates a transaction, applies
* all changes specified by the configuration and if one of them fails, the whole
* journal is replayed to restore the whole original state. Similarly, cf_reload()
* uses the journal to switch between configurations.
*
* In most cases, you need not care about the journal, except when you need
* to change some data from a <<hooks,hook>>, or if you want to call cf_modify_item() and then
* undo the changes.
***/
/**
* This function can be used to disable the whole journalling mechanism.
* It saves some memory, but it makes undoing of configuration changes impossible,
* which breaks for example cf_reload().
**/
void cf_set_journalling(int enable);
/**
* When a block of memory is about to be changed, put the old value
* into journal with this function. You need to call it from a <<hooks,commit hook>>
* if you change anything. It is used internally by low-level parsers.
* <<custom_parser,Custom parsers>> do not need to call it, it is called
* before them.
**/
void cf_journal_block(void *ptr, uint len);
#define CF_JOURNAL_VAR(var) cf_journal_block(&(var), sizeof(var)) // Store a single value into the journal
struct cf_journal_item; /** Opaque identifier of the journal state. **/
/**
* Starts a new transaction. It returns the current state so you can
* get back to it. The @new_pool parameter tells if a new memory pool
* should be created and used from now.
**/
struct cf_journal_item *cf_journal_new_transaction(uint new_pool);
/**
* Marks current state as a complete transaction. The @new_pool
* parameter tells if the transaction was created with new memory pool
* (the parameter must be the same as the one with
* @cf_journal_new_transaction() was called with). The @oldj parameter
* is the journal state returned from last
* @cf_journal_new_transaction() call.
**/
void cf_journal_commit_transaction(uint new_pool, struct cf_journal_item *oldj);
/**
* Returns to an old journal state, reverting anything the current
* transaction did. The @new_pool parameter must be the same as the
* one you used when you created the transaction. The @oldj parameter
* is the journal state you got from @cf_journal_new_transaction() --
* it is the state to return to.
**/
void cf_journal_rollback_transaction(uint new_pool, struct cf_journal_item *oldj);
/***
* [[declare]]
* Section declaration
* ~~~~~~~~~~~~~~~~~~~
**/
/**
* Plug another top-level section into the configuration system.
* @name is the name in the configuration file,
* @sec is pointer to the section description.
* If @allow_unknown is set to 0 and a variable not described in @sec
* is found in the configuration file, it produces an error.
* If you set it to 1, all such variables are ignored.
*
* Please note that a single section definition cannot be used in multiple
* configuration contexts simultaneously.
**/
void cf_declare_section(const char *name, struct cf_section *sec, uint allow_unknown);
/**
* Like @cf_declare_section(), but instead of item pointers, the section
* contains offsets relative to @ptr. In other words, it does the same
* as `CF_SECTION`, but for top-level sections.
**/
void cf_declare_rel_section(const char *name, struct cf_section *sec, void *ptr, uint allow_unknown);
/**
* If you have a section in a structure and you want to initialize it
* (eg. if you want a copy of default values outside the configuration),
* you can use this. It initializes it recursively.
*
* This is used mostly internally. You probably do not need it.
**/
void cf_init_section(const char *name, struct cf_section *sec, void *ptr, uint do_bzero);
/***
* [[bparser]]
* Parsers for basic types
* ~~~~~~~~~~~~~~~~~~~~~~~
*
* Each of them gets a string to parse and pointer to store the value.
* It returns either NULL or error message.
*
* The parsers support units. See <<config:units,their list>>.
***/
char *cf_parse_int(const char *str, int *ptr); /** Parser for integers. **/
char *cf_parse_u64(const char *str, u64 *ptr); /** Parser for 64 unsigned integers. **/
char *cf_parse_double(const char *str, double *ptr); /** Parser for doubles. **/
char *cf_parse_ip(const char *p, u32 *varp); /** Parser for IP addresses. **/
/***
* [[conf_direct]]
* Direct access
* ~~~~~~~~~~~~~
*
* Direct access to configuration items.
* You probably should not need this, but in your do, you have to handle
* <<journal,journalling>> yourself.
***/
/**
* List of operations used on items.
* This macro is used to generate internal source code,
* but you may be interested in the list of operations it creates.
*
* Each operation corresponds to the same-named operation
* described in <<config:operations,configuration syntax>>.
**/
#define CF_OPERATIONS T(CLOSE) T(SET) T(CLEAR) T(ALL) \
T(APPEND) T(PREPEND) T(REMOVE) T(EDIT) T(AFTER) T(BEFORE) T(COPY) T(RESET)
/* Closing brace finishes previous block.
* Basic attributes (static, dynamic, parsed) can be used with SET.
* Dynamic arrays can be used with SET, APPEND, PREPEND.
* Sections can be used with SET.
* Lists can be used with everything. */
#define T(x) OP_##x,
enum cf_operation { CF_OPERATIONS }; /** Allowed operations on items. See <<def_CF_OPERATIONS,`CF_OPERATIONS`>> for list (they have an `OP_` prefix -- it means you use `OP_SET` instead of just `SET`). **/
#undef T
/**
* Searches for a configuration item called @name.
* If it is found, it is copied into @item and NULL is returned.
* Otherwise, an error is returned and @item is zeroed.
**/
char *cf_find_item(const char *name, struct cf_item *item);
/**
* Performs a single operation on a given item.
**/
char *cf_modify_item(struct cf_item *item, enum cf_operation op, int number, char **pars);
/***
* [[conf_dump]]
* Debug dumping
* ~~~~~~~~~~~~~
***/
struct fastbuf;
/**
* Write the current state of all configuration items into @fb.
**/
void cf_dump_sections(struct fastbuf *fb);
#endif