191 lines
4.9 KiB
C
191 lines
4.9 KiB
C
/*
|
|
* UCW Library -- Universal Simple Array Sorter
|
|
*
|
|
* (c) 2003--2008 Martin Mares <mj@ucw.cz>
|
|
*
|
|
* This software may be freely distributed and used according to the terms
|
|
* of the GNU Lesser General Public License.
|
|
*/
|
|
|
|
/*
|
|
* This is not a normal header file, it's a generator of sorting
|
|
* routines. Each time you include it with parameters set in the
|
|
* corresponding preprocessor macros, it generates an array sorter
|
|
* with the parameters given.
|
|
*
|
|
* You might wonder why the heck do we implement our own array sorter
|
|
* instead of using qsort(). The primary reason is that qsort handles
|
|
* only continuous arrays, but we need to sort array-like data structures
|
|
* where the only way to access elements is by using an indexing macro.
|
|
* Besides that, we are more than 2 times faster.
|
|
*
|
|
* So much for advocacy, there are the parameters (those marked with [*]
|
|
* are mandatory):
|
|
*
|
|
* ASORT_PREFIX(x) [*] add a name prefix (used on all global names
|
|
* defined by the sorter)
|
|
* ASORT_KEY_TYPE [*] data type of a single array entry key
|
|
* ASORT_ELT(i) returns the key of i-th element; if this macro is not
|
|
* defined, the function gets a pointer to an array to be sorted
|
|
* ASORT_LT(x,y) x < y for ASORT_KEY_TYPE (default: "x<y")
|
|
* ASORT_SWAP(i,j) swap i-th and j-th element (default: assume _ELT
|
|
* is an l-value and swap just the keys)
|
|
* ASORT_THRESHOLD threshold for switching between quicksort and insertsort
|
|
* ASORT_EXTRA_ARGS extra arguments for the sort function (they are always
|
|
* visible in all the macros supplied above), starts with comma
|
|
*
|
|
* After including this file, a function ASORT_PREFIX(sort)(uint array_size)
|
|
* or ASORT_PREFIX(sort)(ASORT_KEY_TYPE *array, uint array_size) [if ASORT_ELT
|
|
* is not defined] is declared and all parameter macros are automatically
|
|
* undef'd.
|
|
*/
|
|
|
|
#ifndef ASORT_LT
|
|
#define ASORT_LT(x,y) ((x) < (y))
|
|
#endif
|
|
|
|
#ifndef ASORT_SWAP
|
|
#define ASORT_SWAP(i,j) do { ASORT_KEY_TYPE tmp = ASORT_ELT(i); ASORT_ELT(i)=ASORT_ELT(j); ASORT_ELT(j)=tmp; } while (0)
|
|
#endif
|
|
|
|
#ifndef ASORT_THRESHOLD
|
|
#define ASORT_THRESHOLD 8 /* Guesswork and experimentation */
|
|
#endif
|
|
|
|
#ifndef ASORT_EXTRA_ARGS
|
|
#define ASORT_EXTRA_ARGS
|
|
#endif
|
|
|
|
#ifndef ASORT_ELT
|
|
#define ASORT_ARRAY_ARG ASORT_KEY_TYPE *array,
|
|
#define ASORT_ELT(i) array[i]
|
|
#else
|
|
#define ASORT_ARRAY_ARG
|
|
#endif
|
|
|
|
/**
|
|
* The generated sorting function. If `ASORT_ELT` macro is not provided, the
|
|
* @ASORT_ARRAY_ARG is equal to `ASORT_KEY_TYPE *array` and is the array to be
|
|
* sorted. If the macro is provided, this parameter is omitted. In that case,
|
|
* you can sort global variables or pass your structure by @ASORT_EXTRA_ARGS.
|
|
**/
|
|
static void ASORT_PREFIX(sort)(ASORT_ARRAY_ARG uint array_size ASORT_EXTRA_ARGS)
|
|
{
|
|
struct stk { int l, r; } stack[8*sizeof(uint)];
|
|
int l, r, left, right, m;
|
|
uint sp = 0;
|
|
ASORT_KEY_TYPE pivot;
|
|
|
|
if (array_size <= 1)
|
|
return;
|
|
|
|
/* QuickSort with optimizations a'la Sedgewick, but stop at ASORT_THRESHOLD */
|
|
|
|
left = 0;
|
|
right = array_size - 1;
|
|
for(;;)
|
|
{
|
|
l = left;
|
|
r = right;
|
|
m = (l+r)/2;
|
|
if (ASORT_LT(ASORT_ELT(m), ASORT_ELT(l)))
|
|
ASORT_SWAP(l,m);
|
|
if (ASORT_LT(ASORT_ELT(r), ASORT_ELT(m)))
|
|
{
|
|
ASORT_SWAP(m,r);
|
|
if (ASORT_LT(ASORT_ELT(m), ASORT_ELT(l)))
|
|
ASORT_SWAP(l,m);
|
|
}
|
|
pivot = ASORT_ELT(m);
|
|
do
|
|
{
|
|
while (ASORT_LT(ASORT_ELT(l), pivot))
|
|
l++;
|
|
while (ASORT_LT(pivot, ASORT_ELT(r)))
|
|
r--;
|
|
if (l < r)
|
|
{
|
|
ASORT_SWAP(l,r);
|
|
l++;
|
|
r--;
|
|
}
|
|
else if (l == r)
|
|
{
|
|
l++;
|
|
r--;
|
|
}
|
|
}
|
|
while (l <= r);
|
|
if ((r - left) >= ASORT_THRESHOLD && (right - l) >= ASORT_THRESHOLD)
|
|
{
|
|
/* Both partitions ok => push the larger one */
|
|
if ((r - left) > (right - l))
|
|
{
|
|
stack[sp].l = left;
|
|
stack[sp].r = r;
|
|
left = l;
|
|
}
|
|
else
|
|
{
|
|
stack[sp].l = l;
|
|
stack[sp].r = right;
|
|
right = r;
|
|
}
|
|
sp++;
|
|
}
|
|
else if ((r - left) >= ASORT_THRESHOLD)
|
|
{
|
|
/* Left partition OK, right undersize */
|
|
right = r;
|
|
}
|
|
else if ((right - l) >= ASORT_THRESHOLD)
|
|
{
|
|
/* Right partition OK, left undersize */
|
|
left = l;
|
|
}
|
|
else
|
|
{
|
|
/* Both partitions undersize => pop */
|
|
if (!sp)
|
|
break;
|
|
sp--;
|
|
left = stack[sp].l;
|
|
right = stack[sp].r;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We have a partially sorted array, finish by insertsort. Inspired
|
|
* by qsort() in GNU libc.
|
|
*/
|
|
|
|
/* Find minimal element which will serve as a barrier */
|
|
r = MIN(array_size, ASORT_THRESHOLD);
|
|
m = 0;
|
|
for (l=1; l<r; l++)
|
|
if (ASORT_LT(ASORT_ELT(l),ASORT_ELT(m)))
|
|
m = l;
|
|
ASORT_SWAP(0,m);
|
|
|
|
/* Insertion sort */
|
|
for (m=1; m<(int)array_size; m++)
|
|
{
|
|
l=m;
|
|
while (ASORT_LT(ASORT_ELT(m),ASORT_ELT(l-1)))
|
|
l--;
|
|
while (l < m)
|
|
{
|
|
ASORT_SWAP(l,m);
|
|
l++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef ASORT_PREFIX
|
|
#undef ASORT_KEY_TYPE
|
|
#undef ASORT_ELT
|
|
#undef ASORT_LT
|
|
#undef ASORT_SWAP
|
|
#undef ASORT_THRESHOLD
|
|
#undef ASORT_EXTRA_ARGS
|
|
#undef ASORT_ARRAY_ARG
|