Workshop o mikrokontrolérech na SKSP 2024.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

619 lines
16 KiB

/** @defgroup rcc_file RCC peripheral API
*
* @ingroup peripheral_apis
*
* @brief <b>libopencm3 STM32L0xx Reset and Clock Control</b>
*
* @version 1.0.0
*
* @date November 2014
*
* This library supports the Reset and Clock Control System in the STM32F0xx
* series of ARM Cortex Microcontrollers by ST Microelectronics.
*
* LGPL License Terms @ref lgpl_license
*/
/*
* This file is part of the libopencm3 project.
*
* Copyright (C) 2014 Karl Palsson <karlp@tweak.net.au>
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**@{*/
#include <libopencm3/cm3/assert.h>
#include <libopencm3/stm32/flash.h>
#include <libopencm3/stm32/pwr.h>
#include <libopencm3/stm32/rcc.h>
/* Set the default clock frequencies after reset. */
uint32_t rcc_ahb_frequency = 2097000;
uint32_t rcc_apb1_frequency = 2097000;
uint32_t rcc_apb2_frequency = 2097000;
void rcc_osc_on(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR |= RCC_CR_PLLON;
break;
case RCC_MSI:
RCC_CR |= RCC_CR_MSION;
break;
case RCC_HSE:
RCC_CR |= RCC_CR_HSEON;
break;
case RCC_HSI48:
RCC_CRRCR |= RCC_CRRCR_HSI48ON;
break;
case RCC_HSI16:
RCC_CR |= RCC_CR_HSI16ON;
break;
case RCC_LSE:
RCC_CSR |= RCC_CSR_LSEON;
break;
case RCC_LSI:
RCC_CSR |= RCC_CSR_LSION;
break;
}
}
void rcc_osc_off(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CR &= ~RCC_CR_PLLON;
break;
case RCC_MSI:
RCC_CR &= ~RCC_CR_MSION;
break;
case RCC_HSE:
RCC_CR &= ~RCC_CR_HSEON;
break;
case RCC_HSI48:
RCC_CRRCR &= ~RCC_CRRCR_HSI48ON;
break;
case RCC_HSI16:
RCC_CR &= ~RCC_CR_HSI16ON;
break;
case RCC_LSE:
RCC_CSR &= ~RCC_CSR_LSEON;
break;
case RCC_LSI:
RCC_CSR &= ~RCC_CSR_LSION;
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Clear the Oscillator Ready Interrupt Flag
*
* Clear the interrupt flag that was set when a clock oscillator became ready
* to use.
*
* @param[in] osc Oscillator ID
*/
void rcc_osc_ready_int_clear(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CICR |= RCC_CICR_PLLRDYC;
break;
case RCC_HSE:
RCC_CICR |= RCC_CICR_HSERDYC;
break;
case RCC_HSI48:
RCC_CICR |= RCC_CICR_HSI48RDYC;
break;
case RCC_HSI16:
RCC_CICR |= RCC_CICR_HSI16RDYC;
break;
case RCC_MSI:
RCC_CICR |= RCC_CICR_MSIRDYC;
break;
case RCC_LSE:
RCC_CICR |= RCC_CICR_LSERDYC;
break;
case RCC_LSI:
RCC_CICR |= RCC_CICR_LSIRDYC;
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Enable the Oscillator Ready Interrupt
*
* @param[in] osc Oscillator ID
*/
void rcc_osc_ready_int_enable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIER |= RCC_CIER_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIER |= RCC_CIER_HSERDYIE;
break;
case RCC_HSI48:
RCC_CIER |= RCC_CIER_HSI48RDYIE;
break;
case RCC_HSI16:
RCC_CIER |= RCC_CIER_HSI16RDYIE;
break;
case RCC_MSI:
RCC_CIER |= RCC_CIER_MSIRDYIE;
break;
case RCC_LSE:
RCC_CIER |= RCC_CIER_LSERDYIE;
break;
case RCC_LSI:
RCC_CIER |= RCC_CIER_LSIRDYIE;
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Disable the Oscillator Ready Interrupt
*
* @param[in] osc Oscillator ID
*/
void rcc_osc_ready_int_disable(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CIER &= ~RCC_CIER_PLLRDYIE;
break;
case RCC_HSE:
RCC_CIER &= ~RCC_CIER_HSERDYIE;
break;
case RCC_HSI48:
RCC_CIER &= ~RCC_CIER_HSI48RDYIE;
break;
case RCC_HSI16:
RCC_CIER &= ~RCC_CIER_HSI16RDYIE;
break;
case RCC_MSI:
RCC_CIER &= ~RCC_CIER_MSIRDYIE;
break;
case RCC_LSE:
RCC_CIER &= ~RCC_CIER_LSERDYIE;
break;
case RCC_LSI:
RCC_CIER &= ~RCC_CIER_LSIRDYIE;
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Read the Oscillator Ready Interrupt Flag
*
* @param[in] osc Oscillator ID
* @returns int. Boolean value for flag set.
*/
int rcc_osc_ready_int_flag(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return ((RCC_CIFR & RCC_CIFR_PLLRDYF) != 0);
break;
case RCC_HSE:
return ((RCC_CIFR & RCC_CIFR_HSERDYF) != 0);
break;
case RCC_HSI48:
return ((RCC_CIFR & RCC_CIFR_HSI48RDYF) != 0);
break;
case RCC_HSI16:
return ((RCC_CIFR & RCC_CIFR_HSI16RDYF) != 0);
break;
case RCC_MSI:
return ((RCC_CIFR & RCC_CIFR_MSIRDYF) != 0);
break;
case RCC_LSE:
return ((RCC_CIFR & RCC_CIFR_LSERDYF) != 0);
break;
case RCC_LSI:
return ((RCC_CIFR & RCC_CIFR_LSIRDYF) != 0);
break;
}
cm3_assert_not_reached();
}
bool rcc_is_osc_ready(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
return RCC_CR & RCC_CR_PLLRDY;
case RCC_HSE:
return RCC_CR & RCC_CR_HSERDY;
case RCC_HSI16:
return RCC_CR & RCC_CR_HSI16RDY;
case RCC_HSI48:
return RCC_CRRCR & RCC_CRRCR_HSI48RDY;
case RCC_MSI:
return RCC_CR & RCC_CR_MSIRDY;
case RCC_LSE:
return RCC_CSR & RCC_CSR_LSERDY;
case RCC_LSI:
return RCC_CSR & RCC_CSR_LSIRDY;
}
return false;
}
void rcc_wait_for_osc_ready(enum rcc_osc osc)
{
while (!rcc_is_osc_ready(osc));
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set HSI48 clock source to the RC48 (CRS)
*/
void rcc_set_hsi48_source_rc48(void)
{
RCC_CCIPR |= RCC_CCIPR_HSI48SEL;
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set HSI48 clock source to the PLL
*/
void rcc_set_hsi48_source_pll(void)
{
RCC_CCIPR &= ~RCC_CCIPR_HSI48SEL;
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the Source for the System Clock.
*
* @param[in] osc Oscillator ID. Only HSE, HSI16, MSI and PLL have effect.
*/
void rcc_set_sysclk_source(enum rcc_osc osc)
{
switch (osc) {
case RCC_PLL:
RCC_CFGR |= RCC_CFGR_SW_PLL;
break;
case RCC_HSE:
RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_HSE;
break;
case RCC_HSI16:
RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_HSI16;
break;
case RCC_MSI:
RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_MSI;
break;
case RCC_HSI48:
case RCC_LSE:
case RCC_LSI:
break;
}
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the PLL Multiplication Factor.
*
* @note This only has effect when the PLL is disabled.
*
* @param[in] factor PLL multiplication factor @ref rcc_cfgr_pmf
*/
void rcc_set_pll_multiplier(uint32_t factor)
{
uint32_t reg = RCC_CFGR
& ~(RCC_CFGR_PLLMUL_MASK << RCC_CFGR_PLLMUL_SHIFT);
RCC_CFGR = reg | (factor << RCC_CFGR_PLLMUL_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the PLL Division Factor.
*
* @note This only has effect when the PLL is disabled.
*
* @param[in] factor PLL multiplication factor @ref rcc_cfgr_pdf
*/
void rcc_set_pll_divider(uint32_t factor)
{
uint32_t reg = RCC_CFGR
& ~(RCC_CFGR_PLLDIV_MASK << RCC_CFGR_PLLDIV_SHIFT);
RCC_CFGR = reg | (factor << RCC_CFGR_PLLDIV_SHIFT);
}
/**
* Set the pll source.
* @param pllsrc RCC_CFGR_PLLSRC_HSI16_CLK or RCC_CFGR_PLLSRC_HSE_CLK
*/
void rcc_set_pll_source(uint32_t pllsrc)
{
uint32_t reg32;
reg32 = RCC_CFGR;
reg32 &= ~(RCC_CFGR_PLLSRC_HSE_CLK << 16);
RCC_CFGR = (reg32 | (pllsrc<<16));
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the APB1 Prescale Factor.
*
* @note The APB1 clock frequency must not exceed 32MHz.
*
* @param[in] ppre APB prescale factor @ref rcc_cfgr_apb1pre
*/
void rcc_set_ppre1(uint32_t ppre)
{
uint32_t reg = RCC_CFGR
& ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT);
RCC_CFGR = reg | (ppre << RCC_CFGR_PPRE1_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the APB2 Prescale Factor.
*
* @note The APB2 clock frequency must not exceed 32MHz.
*
* @param[in] ppre APB prescale factor @ref rcc_cfgr_apb2pre
*/
void rcc_set_ppre2(uint32_t ppre)
{
uint32_t reg = RCC_CFGR
& ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT);
RCC_CFGR = reg | (ppre << RCC_CFGR_PPRE2_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief RCC Set the AHB Prescale Factor.
*
* @param[in] hpre Unsigned int32. AHB prescale factor @ref rcc_cfgr_ahbpre
*/
void rcc_set_hpre(uint32_t hpre)
{
uint32_t reg = RCC_CFGR & ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT);
RCC_CFGR = reg | (hpre << RCC_CFGR_HPRE_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the range of the MSI oscillator
*
* @param msi_range desired range @ref rcc_icscr_msirange
*/
void rcc_set_msi_range(uint32_t msi_range)
{
uint32_t reg32 = RCC_ICSCR & ~(RCC_ICSCR_MSIRANGE_MASK << RCC_ICSCR_MSIRANGE_SHIFT);
RCC_ICSCR = reg32 | (msi_range << RCC_ICSCR_MSIRANGE_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the LPTIM1 clock source
*
* @param lptim1_sel peripheral clock source @ref rcc_ccpipr_lptim1sel
*/
void rcc_set_lptim1_sel(uint32_t lptim1_sel)
{
RCC_CCIPR &= ~(RCC_CCIPR_LPTIM1SEL_MASK << RCC_CCIPR_LPTIM1SEL_SHIFT);
RCC_CCIPR |= (lptim1_sel << RCC_CCIPR_LPTIM1SEL_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the LPUART1 clock source
*
* @param lpuart1_sel periphral clock source @ref rcc_ccpipr_lpuart1sel
*/
void rcc_set_lpuart1_sel(uint32_t lpuart1_sel)
{
RCC_CCIPR &= ~(RCC_CCIPR_LPUART1SEL_MASK << RCC_CCIPR_LPTIM1SEL_SHIFT);
RCC_CCIPR |= (lpuart1_sel << RCC_CCIPR_LPTIM1SEL_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the USART1 clock source
*
* @param usart1_sel periphral clock source @ref rcc_ccpipr_usart1sel
*/
void rcc_set_usart1_sel(uint32_t usart1_sel)
{
RCC_CCIPR &= ~(RCC_CCIPR_USART1SEL_MASK << RCC_CCIPR_USART1SEL_SHIFT);
RCC_CCIPR |= (usart1_sel << RCC_CCIPR_USART1SEL_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the USART2 clock source
*
* @param usart2_sel periphral clock source @ref rcc_ccpipr_usartxsel
*/
void rcc_set_usart2_sel(uint32_t usart2_sel)
{
RCC_CCIPR &= ~(RCC_CCIPR_USART2SEL_MASK << RCC_CCIPR_USART2SEL_SHIFT);
RCC_CCIPR |= (usart2_sel << RCC_CCIPR_USART2SEL_SHIFT);
}
/*---------------------------------------------------------------------------*/
/** @brief Set the peripheral clock source
* @param periph peripheral of desire, eg XXX_BASE
* @param sel peripheral clock source
*/
void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel)
{
uint8_t shift;
uint32_t mask;
switch (periph) {
case LPTIM1_BASE:
shift = RCC_CCIPR_LPTIM1SEL_SHIFT;
mask = RCC_CCIPR_LPTIM1SEL_MASK;
break;
case I2C3_BASE:
shift = RCC_CCIPR_I2C3SEL_SHIFT;
mask = RCC_CCIPR_I2C3SEL_MASK;
break;
case I2C1_BASE:
shift = RCC_CCIPR_I2C1SEL_SHIFT;
mask = RCC_CCIPR_I2C1SEL_MASK;
break;
case LPUART1_BASE:
shift = RCC_CCIPR_LPUART1SEL_SHIFT;
mask = RCC_CCIPR_LPUART1SEL_MASK;
break;
case USART2_BASE:
shift = RCC_CCIPR_USART2SEL_SHIFT;
mask = RCC_CCIPR_USART2SEL_MASK;
break;
case USART1_BASE:
shift = RCC_CCIPR_USART1SEL_SHIFT;
mask = RCC_CCIPR_USART1SEL_MASK;
break;
default:
return;
}
uint32_t reg32 = RCC_CCIPR & ~(mask << shift);
RCC_CCIPR = reg32 | (sel << shift);
}
/* Helper to calculate the frequency of a clksel based clock. */
static uint32_t rcc_uart_i2c_clksel_freq_hz(uint32_t apb_clk, uint8_t shift) {
uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_I2C1SEL_MASK;
uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK;
switch (clksel) {
case RCC_CCIPR_USART1SEL_APB:
return apb_clk;
case RCC_CCIPR_USART1SEL_SYS:
return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre);
case RCC_CCIPR_USART1SEL_HSI16:
return 16000000U;
}
cm3_assert_not_reached();
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the USART at base specified.
* @param usart Base address of USART to get clock frequency for.
*/
uint32_t rcc_get_usart_clk_freq(uint32_t usart)
{
if (usart == LPUART1_BASE) {
return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_LPUART1SEL_SHIFT);
} else if (usart == USART1_BASE) {
return rcc_uart_i2c_clksel_freq_hz(rcc_apb2_frequency, RCC_CCIPR_USART1SEL_SHIFT);
} else {
return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_USART2SEL_SHIFT);
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the Timer at base specified.
* @param timer Base address of TIM to get clock frequency for.
*/
uint32_t rcc_get_timer_clk_freq(uint32_t timer)
{
/* Handle APB1 timers, and apply multiplier if necessary. */
if (timer >= TIM2_BASE && timer <= TIM7_BASE) {
uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK;
return (ppre1 == RCC_CFGR_PPRE1_NODIV) ? rcc_apb1_frequency
: 2 * rcc_apb1_frequency;
} else {
uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK;
return (ppre2 == RCC_CFGR_PPRE2_NODIV) ? rcc_apb2_frequency
: 2 * rcc_apb2_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the I2C device at base specified.
* @param i2c Base address of I2C to get clock frequency for.
*/
uint32_t rcc_get_i2c_clk_freq(uint32_t i2c)
{
if (i2c == I2C1_BASE) {
return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C1SEL_SHIFT);
} else if (i2c == I2C3_BASE) {
return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C3SEL_SHIFT);
} else {
return rcc_apb1_frequency;
}
}
/*---------------------------------------------------------------------------*/
/** @brief Get the peripheral clock speed for the SPI device at base specified.
* @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE).
*/
uint32_t rcc_get_spi_clk_freq(uint32_t spi) {
if (spi == SPI1_BASE) {
return rcc_apb2_frequency;
} else {
return rcc_apb1_frequency;
}
}
/** @brief RCC Setup PLL and use it as Sysclk source.
*
* @param[in] clock full struct with desired parameters
*
*/
void rcc_clock_setup_pll(const struct rcc_clock_scale *clock)
{
/* Turn on the appropriate source for the PLL */
if (clock->pll_source == RCC_CFGR_PLLSRC_HSE_CLK) {
rcc_osc_on(RCC_HSE);
rcc_wait_for_osc_ready(RCC_HSE);
} else {
rcc_osc_on(RCC_HSI16);
rcc_wait_for_osc_ready(RCC_HSI16);
}
rcc_set_hpre(clock->hpre);
rcc_set_ppre1(clock->ppre1);
rcc_set_ppre2(clock->ppre2);
rcc_periph_clock_enable(RCC_PWR);
pwr_set_vos_scale(clock->voltage_scale);
rcc_osc_off(RCC_PLL);
while (rcc_is_osc_ready(RCC_PLL));
flash_prefetch_enable();
flash_set_ws(clock->flash_waitstates);
/* Set up the PLL */
rcc_set_pll_multiplier(clock->pll_mul);
rcc_set_pll_divider(clock->pll_div);
rcc_set_pll_source(clock->pll_source);
rcc_osc_on(RCC_PLL);
rcc_wait_for_osc_ready(RCC_PLL);
rcc_set_sysclk_source(RCC_PLL);
/* Set the peripheral clock frequencies used. */
rcc_ahb_frequency = clock->ahb_frequency;
rcc_apb1_frequency = clock->apb1_frequency;
rcc_apb2_frequency = clock->apb2_frequency;
}
/**@}*/