Workshop o mikrokontrolérech na SKSP 2024.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

583 lines
14 KiB

/*
* UCW Library -- Memory Pools (One-Time Allocation)
*
* (c) 1997--2014 Martin Mares <mj@ucw.cz>
* (c) 2007--2017 Pavel Charvat <pchar@ucw.cz>
*
* This software may be freely distributed and used according to the terms
* of the GNU Lesser General Public License.
*/
#undef LOCAL_DEBUG
#include <ucw/lib.h>
#include <ucw/alloc.h>
#include <ucw/mempool.h>
#include <string.h>
#define MP_CHUNK_TAIL ALIGN_TO(sizeof(struct mempool_chunk), CPU_STRUCT_ALIGN)
#define MP_SIZE_MAX (SIZE_MAX - MP_CHUNK_TAIL - CPU_PAGE_SIZE)
struct mempool_chunk {
#ifdef CONFIG_DEBUG
struct mempool *pool; // Can be useful when analysing coredump for memory leaks
#endif
struct mempool_chunk *next;
size_t size;
};
static size_t
mp_align_size(size_t size)
{
#ifdef CONFIG_UCW_POOL_IS_MMAP
size = MAX(size, 64 + MP_CHUNK_TAIL);
return ALIGN_TO(size, CPU_PAGE_SIZE) - MP_CHUNK_TAIL;
#else
return ALIGN_TO(size, CPU_STRUCT_ALIGN);
#endif
}
static void *mp_allocator_alloc(struct ucw_allocator *a, size_t size)
{
struct mempool *mp = (struct mempool *) a;
return mp_alloc_fast(mp, size);
}
static void *mp_allocator_realloc(struct ucw_allocator *a, void *ptr, size_t old_size, size_t new_size)
{
if (new_size <= old_size)
return ptr;
/*
* In the future, we might want to do something like mp_realloc(),
* but we have to check that it is indeed the last block in the pool.
*/
struct mempool *mp = (struct mempool *) a;
void *new = mp_alloc_fast(mp, new_size);
memcpy(new, ptr, old_size);
return new;
}
static void mp_allocator_free(struct ucw_allocator *a UNUSED, void *ptr UNUSED)
{
// Does nothing
}
void
mp_init(struct mempool *pool, size_t chunk_size)
{
chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size));
*pool = (struct mempool) {
.allocator = {
.alloc = mp_allocator_alloc,
.realloc = mp_allocator_realloc,
.free = mp_allocator_free,
},
.chunk_size = chunk_size,
.threshold = chunk_size >> 1,
.last_big = &pool->last_big
};
}
static void *
mp_new_big_chunk(struct mempool *pool, size_t size)
{
struct mempool_chunk *chunk;
chunk = xmalloc(size + MP_CHUNK_TAIL) + size;
chunk->size = size;
if (pool)
pool->total_size += size + MP_CHUNK_TAIL;
return chunk;
}
static void
mp_free_big_chunk(struct mempool *pool, struct mempool_chunk *chunk)
{
pool->total_size -= chunk->size + MP_CHUNK_TAIL;
xfree((void *)chunk - chunk->size);
}
static void *
mp_new_chunk(struct mempool *pool, size_t size)
{
#ifdef CONFIG_UCW_POOL_IS_MMAP
struct mempool_chunk *chunk;
chunk = page_alloc(size + MP_CHUNK_TAIL) + size;
chunk->size = size;
if (pool)
pool->total_size += size + MP_CHUNK_TAIL;
return chunk;
#else
return mp_new_big_chunk(pool, size);
#endif
}
static void
mp_free_chunk(struct mempool *pool, struct mempool_chunk *chunk)
{
#ifdef CONFIG_UCW_POOL_IS_MMAP
pool->total_size -= chunk->size + MP_CHUNK_TAIL;
page_free((void *)chunk - chunk->size, chunk->size + MP_CHUNK_TAIL);
#else
mp_free_big_chunk(pool, chunk);
#endif
}
struct mempool *
mp_new(size_t chunk_size)
{
chunk_size = mp_align_size(MAX(sizeof(struct mempool), chunk_size));
struct mempool_chunk *chunk = mp_new_chunk(NULL, chunk_size);
struct mempool *pool = (void *)chunk - chunk_size;
DBG("Creating mempool %p with %zu bytes long chunks", pool, chunk_size);
chunk->next = NULL;
#ifdef CONFIG_DEBUG
chunk->pool = pool;
#endif
*pool = (struct mempool) {
.allocator = {
.alloc = mp_allocator_alloc,
.realloc = mp_allocator_realloc,
.free = mp_allocator_free,
},
.state = { .free = { chunk_size - sizeof(*pool) }, .last = { chunk } },
.chunk_size = chunk_size,
.threshold = chunk_size >> 1,
.last_big = &pool->last_big,
.total_size = chunk->size + MP_CHUNK_TAIL,
};
return pool;
}
static void
mp_free_chain(struct mempool *pool, struct mempool_chunk *chunk)
{
while (chunk)
{
struct mempool_chunk *next = chunk->next;
mp_free_chunk(pool, chunk);
chunk = next;
}
}
static void
mp_free_big_chain(struct mempool *pool, struct mempool_chunk *chunk)
{
while (chunk)
{
struct mempool_chunk *next = chunk->next;
mp_free_big_chunk(pool, chunk);
chunk = next;
}
}
void
mp_delete(struct mempool *pool)
{
DBG("Deleting mempool %p", pool);
mp_free_big_chain(pool, pool->state.last[1]);
mp_free_chain(pool, pool->unused);
mp_free_chain(pool, pool->state.last[0]); // can contain the mempool structure
}
void
mp_flush(struct mempool *pool)
{
mp_free_big_chain(pool, pool->state.last[1]);
struct mempool_chunk *chunk, *next;
for (chunk = pool->state.last[0]; chunk && (void *)chunk - chunk->size != pool; chunk = next)
{
next = chunk->next;
chunk->next = pool->unused;
pool->unused = chunk;
}
pool->state.last[0] = chunk;
pool->state.free[0] = chunk ? chunk->size - sizeof(*pool) : 0;
pool->state.last[1] = NULL;
pool->state.free[1] = 0;
pool->state.next = NULL;
pool->last_big = &pool->last_big;
}
static void
mp_stats_chain(struct mempool *pool, struct mempool_chunk *chunk, struct mempool_stats *stats, uint idx)
{
while (chunk)
{
stats->chain_size[idx] += chunk->size + MP_CHUNK_TAIL;
stats->chain_count[idx]++;
if (idx < 2)
{
stats->used_size += chunk->size;
if ((byte *)pool == (byte *)chunk - chunk->size)
stats->used_size -= sizeof(*pool);
}
chunk = chunk->next;
}
stats->total_size += stats->chain_size[idx];
}
void
mp_stats(struct mempool *pool, struct mempool_stats *stats)
{
bzero(stats, sizeof(*stats));
mp_stats_chain(pool, pool->state.last[0], stats, 0);
mp_stats_chain(pool, pool->state.last[1], stats, 1);
mp_stats_chain(pool, pool->unused, stats, 2);
stats->used_size -= pool->state.free[0] + pool->state.free[1];
ASSERT(stats->total_size == pool->total_size);
ASSERT(stats->used_size <= stats->total_size);
}
u64
mp_total_size(struct mempool *pool)
{
return pool->total_size;
}
void
mp_shrink(struct mempool *pool, u64 min_total_size)
{
while (1)
{
struct mempool_chunk *chunk = pool->unused;
if (!chunk || pool->total_size - (chunk->size + MP_CHUNK_TAIL) < min_total_size)
break;
pool->unused = chunk->next;
mp_free_chunk(pool, chunk);
}
}
void *
mp_alloc_internal(struct mempool *pool, size_t size)
{
struct mempool_chunk *chunk;
if (size <= pool->threshold)
{
pool->idx = 0;
if (pool->unused)
{
chunk = pool->unused;
pool->unused = chunk->next;
}
else
{
chunk = mp_new_chunk(pool, pool->chunk_size);
#ifdef CONFIG_DEBUG
chunk->pool = pool;
#endif
}
chunk->next = pool->state.last[0];
pool->state.last[0] = chunk;
pool->state.free[0] = pool->chunk_size - size;
return (void *)chunk - pool->chunk_size;
}
else if (likely(size <= MP_SIZE_MAX))
{
pool->idx = 1;
size_t aligned = ALIGN_TO(size, CPU_STRUCT_ALIGN);
chunk = mp_new_big_chunk(pool, aligned);
chunk->next = pool->state.last[1];
#ifdef CONFIG_DEBUG
chunk->pool = pool;
#endif
pool->state.last[1] = chunk;
pool->state.free[1] = aligned - size;
return pool->last_big = (void *)chunk - aligned;
}
else
die("Cannot allocate %zu bytes from a mempool", size);
}
void *
mp_alloc(struct mempool *pool, size_t size)
{
return mp_alloc_fast(pool, size);
}
void *
mp_alloc_noalign(struct mempool *pool, size_t size)
{
return mp_alloc_fast_noalign(pool, size);
}
void *
mp_alloc_zero(struct mempool *pool, size_t size)
{
void *ptr = mp_alloc_fast(pool, size);
bzero(ptr, size);
return ptr;
}
void *
mp_start_internal(struct mempool *pool, size_t size)
{
void *ptr = mp_alloc_internal(pool, size);
pool->state.free[pool->idx] += size;
return ptr;
}
void *
mp_start(struct mempool *pool, size_t size)
{
return mp_start_fast(pool, size);
}
void *
mp_start_noalign(struct mempool *pool, size_t size)
{
return mp_start_fast_noalign(pool, size);
}
void *
mp_grow_internal(struct mempool *pool, size_t size)
{
if (unlikely(size > MP_SIZE_MAX))
die("Cannot allocate %zu bytes of memory", size);
size_t avail = mp_avail(pool);
void *ptr = mp_ptr(pool);
if (pool->idx)
{
size_t amortized = likely(avail <= MP_SIZE_MAX / 2) ? avail * 2 : MP_SIZE_MAX;
amortized = MAX(amortized, size);
amortized = ALIGN_TO(amortized, CPU_STRUCT_ALIGN);
struct mempool_chunk *chunk = pool->state.last[1], *next = chunk->next;
pool->total_size = pool->total_size - chunk->size + amortized;
ptr = xrealloc(ptr, amortized + MP_CHUNK_TAIL);
chunk = ptr + amortized;
chunk->next = next;
chunk->size = amortized;
pool->state.last[1] = chunk;
pool->state.free[1] = amortized;
pool->last_big = ptr;
return ptr;
}
else
{
void *p = mp_start_internal(pool, size);
memcpy(p, ptr, avail);
return p;
}
}
size_t
mp_open(struct mempool *pool, void *ptr)
{
return mp_open_fast(pool, ptr);
}
void *
mp_realloc(struct mempool *pool, void *ptr, size_t size)
{
return mp_realloc_fast(pool, ptr, size);
}
void *
mp_realloc_zero(struct mempool *pool, void *ptr, size_t size)
{
size_t old_size = mp_open_fast(pool, ptr);
ptr = mp_grow(pool, size);
if (size > old_size)
bzero(ptr + old_size, size - old_size);
mp_end(pool, ptr + size);
return ptr;
}
void *
mp_spread_internal(struct mempool *pool, void *p, size_t size)
{
void *old = mp_ptr(pool);
void *new = mp_grow_internal(pool, p-old+size);
return p-old+new;
}
void
mp_restore(struct mempool *pool, struct mempool_state *state)
{
struct mempool_chunk *chunk, *next;
struct mempool_state s = *state;
for (chunk = pool->state.last[0]; chunk != s.last[0]; chunk = next)
{
next = chunk->next;
chunk->next = pool->unused;
pool->unused = chunk;
}
for (chunk = pool->state.last[1]; chunk != s.last[1]; chunk = next)
{
next = chunk->next;
mp_free_big_chunk(pool, chunk);
}
pool->state = s;
pool->last_big = &pool->last_big;
}
struct mempool_state *
mp_push(struct mempool *pool)
{
struct mempool_state state = pool->state;
struct mempool_state *p = mp_alloc_fast(pool, sizeof(*p));
*p = state;
pool->state.next = p;
return p;
}
void
mp_pop(struct mempool *pool)
{
ASSERT(pool->state.next);
mp_restore(pool, pool->state.next);
}
#ifdef TEST
#include <ucw/getopt.h>
#include <stdio.h>
static void
fill(byte *ptr, uint len, uint magic)
{
while (len--)
*ptr++ = (magic++ & 255);
}
static void
check(byte *ptr, uint len, uint magic, uint align)
{
ASSERT(!((uintptr_t)ptr & (align - 1)));
while (len--)
if (*ptr++ != (magic++ & 255))
ASSERT(0);
}
int main(int argc, char **argv)
{
log_init(argv[0]);
cf_def_file = NULL;
if (cf_getopt(argc, argv, CF_SHORT_OPTS, CF_NO_LONG_OPTS, NULL) >= 0 || argc != optind)
die("Invalid usage");
random_gen_seed();
uint max = 1000, n = 0, m = 0, can_realloc = 0;
void *ptr[max];
struct mempool_state *state[max];
uint len[max], num[max], align[max];
struct mempool *mp = mp_new(128), mp_static;
for (uint i = 0; i < 5000; i++)
{
for (uint j = 0; j < n; j++)
check(ptr[j], len[j], j, align[j]);
#if 0
DBG("free_small=%u free_big=%u idx=%u chunk_size=%u last_big=%p", mp->state.free[0], mp->state.free[1], mp->idx, mp->chunk_size, mp->last_big);
for (struct mempool_chunk *ch = mp->state.last[0]; ch; ch = ch->next)
DBG("small %p %p %p %d", (byte *)ch - ch->size, ch, ch + 1, ch->size);
for (struct mempool_chunk *ch = mp->state.last[1]; ch; ch = ch->next)
DBG("big %p %p %p %d", (byte *)ch - ch->size, ch, ch + 1, ch->size);
#endif
int r = random_max(100);
if ((r -= 1) < 0)
{
DBG("flush");
mp_flush(mp);
n = m = 0;
}
else if ((r -= 1) < 0)
{
DBG("delete & new");
mp_delete(mp);
if (random_max(2))
mp = mp_new(random_max(0x1000) + 1);
else
mp = &mp_static, mp_init(mp, random_max(512) + 1);
n = m = 0;
}
else if (n < max && (r -= 30) < 0)
{
len[n] = random_max(0x2000);
DBG("alloc(%u)", len[n]);
align[n] = random_max(2) ? CPU_STRUCT_ALIGN : 1;
ptr[n] = (align[n] == 1) ? mp_alloc_fast_noalign(mp, len[n]) : mp_alloc_fast(mp, len[n]);
DBG(" -> (%p)", ptr[n]);
fill(ptr[n], len[n], n);
n++;
can_realloc = 1;
}
else if (n < max && (r -= 20) < 0)
{
len[n] = random_max(0x2000);
DBG("start(%u)", len[n]);
align[n] = random_max(2) ? CPU_STRUCT_ALIGN : 1;
ptr[n] = (align[n] == 1) ? mp_start_fast_noalign(mp, len[n]) : mp_start_fast(mp, len[n]);
DBG(" -> (%p)", ptr[n]);
fill(ptr[n], len[n], n);
n++;
can_realloc = 1;
goto grow;
}
else if (can_realloc && n && (r -= 10) < 0)
{
if (mp_open(mp, ptr[n - 1]) != len[n - 1])
ASSERT(0);
grow:
{
uint k = n - 1;
for (uint i = random_max(4); i--; )
{
uint l = len[k];
len[k] = random_max(0x2000);
DBG("grow(%u)", len[k]);
ptr[k] = mp_grow(mp, len[k]);
DBG(" -> (%p)", ptr[k]);
check(ptr[k], MIN(l, len[k]), k, align[k]);
fill(ptr[k], len[k], k);
}
mp_end(mp, ptr[k] + len[k]);
}
}
else if (can_realloc && n && (r -= 20) < 0)
{
uint i = n - 1, l = len[i];
DBG("realloc(%p, %u)", ptr[i], len[i]);
ptr[i] = mp_realloc(mp, ptr[i], len[i] = random_max(0x2000));
DBG(" -> (%p, %u)", ptr[i], len[i]);
check(ptr[i], MIN(len[i], l), i, align[i]);
fill(ptr[i], len[i], i);
}
else if (m < max && (r -= 5) < 0)
{
DBG("push(%u)", m);
num[m] = n;
state[m++] = mp_push(mp);
can_realloc = 0;
}
else if (m && (r -= 2) < 0)
{
m--;
DBG("pop(%u)", m);
mp_pop(mp);
n = num[m];
can_realloc = 0;
}
else if (m && (r -= 1) < 0)
{
uint i = random_max(m);
DBG("restore(%u)", i);
mp_restore(mp, state[i]);
n = num[m = i];
can_realloc = 0;
}
else if (can_realloc && n && (r -= 5) < 0)
ASSERT(mp_size(mp, ptr[n - 1]) == len[n - 1]);
else
{
struct mempool_stats stats;
mp_stats(mp, &stats);
}
}
mp_delete(mp);
return 0;
}
#endif