Workshop o mikrokontrolérech na SKSP 2024.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

786 lines
22 KiB

/*
* UCW Library -- Universal Hash Table
*
* (c) 2002--2004 Martin Mares <mj@ucw.cz>
* (c) 2002--2005 Robert Spalek <robert@ucw.cz>
* (c) 2010 Pavel Charvat <pchar@ucw.cz>
* (c) 2012 Tomas Valla <tom@ucw.cz>
*
* This software may be freely distributed and used according to the terms
* of the GNU Lesser General Public License.
*/
/*
* This is not a normal header file, it's a generator of hash tables.
* Each time you include it with parameters set in the corresponding
* preprocessor macros, it generates a hash table with the parameters
* given.
*
* You need to specify:
*
* HASH_NODE data type where a node dwells (usually a struct).
* HASH_PREFIX(x) macro to add a name prefix (used on all global names
* defined by the hash table generator).
*
* Then decide on type of keys:
*
* HASH_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
* a type which can be compared using `==')
* HASH_ATOMIC_TYPE (defaults to int).
* | HASH_KEY_STRING=f use node->f as a string key, allocated
* separately from the rest of the node.
* | HASH_KEY_ENDSTRING=f use node->f as a string key, allocated
* automatically at the end of the node struct
* (to be declared as "char f[1]" at the end).
* | HASH_KEY_COMPLEX use a multi-component key; as the name suggests,
* the passing of parameters is a bit complex then.
* The HASH_KEY_COMPLEX(x) macro should expand to
* `x k1, x k2, ... x kn' and you should also define:
* HASH_KEY_DECL declaration of function parameters in which key
* should be passed to all hash table operations.
* That is, `type1 k1, type2 k2, ... typen kn'.
* With complex keys, HASH_GIVE_HASHFN and HASH_GIVE_EQ
* are mandatory.
* | HASH_KEY_MEMORY=f use node->f as a raw data key, compared using
* memcmp
* HASH_KEY_SIZE the length of the key block
*
* Then specify what operations you request (all names are automatically
* prefixed by calling HASH_PREFIX):
*
* <always defined> init() -- initialize the hash table.
* HASH_WANT_CLEANUP cleanup() -- deallocate the hash table.
* HASH_WANT_FIND node *find(key) -- find first node with the specified
* key, return NULL if no such node exists.
* HASH_WANT_FIND_NEXT node *find(node *start) -- find next node with the
* specified key, return NULL if no such node exists.
* HASH_WANT_NEW node *new(key) -- create new node with given key.
* Doesn't check whether it already exists.
* HASH_WANT_LOOKUP node *lookup(key) -- find node with given key,
* if it doesn't exist, create it. Defining
* HASH_GIVE_INIT_DATA is strongly recommended.
* Use HASH_LOOKUP_DETECT_NEW if you want to know
* whether the node was newly created or not.
* HASH_WANT_DELETE int delete(key) -- delete and deallocate node
* with given key. Returns success.
* HASH_WANT_REMOVE remove(node *) -- delete and deallocate given node.
*
* You can also supply several functions:
*
* HASH_GIVE_HASHFN uint hash(key) -- calculate hash value of key.
* We have sensible default hash functions for strings
* and integers.
* HASH_GIVE_EQ int eq(key1, key2) -- return whether keys are equal.
* By default, we use == for atomic types and either
* strcmp or strcasecmp for strings.
* HASH_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
* node should be allocated for dynamic data. Default=0
* or length of the string with HASH_KEY_ENDSTRING.
* HASH_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
* created node. Defaults: assignment for atomic keys
* and static strings, strcpy for end-allocated strings.
* HASH_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
* newly created node. Very useful for lookup operations.
* HASH_GIVE_ALLOC void *alloc(uint size) -- allocate space for
* a node. Default is xmalloc() or pooled allocation, depending
* on HASH_USE_POOL, HASH_AUTO_POOL, HASH_USE_ELTPOOL
* and HASH_AUTO_ELTPOOL switches. void free(void *) -- the converse.
* HASH_GIVE_TABLE_ALLOC void *table_alloc(uint size), void *table_free(void *)
* Allocate or free space for the table itself. Default is xmalloc()
* or the functions defined by HASH_GIVE_ALLOC if HASH_TABLE_ALLOC is set.
*
* ... and a couple of extra parameters:
*
* HASH_NOCASE String comparisons should be case-insensitive.
* HASH_DEFAULT_SIZE=n Initially, use hash table of approx. `n' entries.
* HASH_CONSERVE_SPACE Use as little space as possible.
* HASH_FN_BITS=n The hash function gives only `n' significant bits.
* HASH_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
* HASH_USE_POOL=pool Allocate all nodes from given mempool. Note, however, that
* deallocation is not supported by mempools, so delete/remove
* will leak pool memory.
* HASH_AUTO_POOL=size Create a pool of the given block size automatically.
* HASH_USE_ELTPOOL=pool Allocate all nodes from given eltpool.
* HASH_AUTO_ELTPOOL=count Create an eltpool of the given number of elements in each chunk.
* HASH_ZERO_FILL New entries should be initialized to all zeroes.
* HASH_TABLE_ALLOC The hash table itself will be allocated and freed using
* the same allocation functions as the nodes instead of
* the default xmalloc().
* HASH_TABLE_GROWING Never decrease the size of the hash table itself
* HASH_TABLE_DYNAMIC Support multiple hash tables; the first parameter of all
* hash table operations is struct HASH_PREFIX(table) *.
* HASH_TABLE_VARS Extra variables to be defined in table structure
* HASH_LOOKUP_DETECT_NEW
* the prototype for lookup is changed to node *lookup(key, int *new_item)
* new_item must not be NULL and returns 1 whether lookup
* just created a new item in the hashtable or 0 otherwise.
*
* You also get a iterator macro at no extra charge:
*
* HASH_FOR_ALL(hash_prefix, variable)
* {
* // node *variable gets declared automatically
* do_something_with_node(variable);
* // use HASH_BREAK and HASH_CONTINUE instead of break and continue
* // you must not alter contents of the hash table here
* }
* HASH_END_FOR;
*
* (For dynamic tables, use HASH_FOR_ALL_DYNAMIC(hash_prefix, hash_table, variable) instead.)
*
* Then include <ucw/hashtable.h> and voila, you have a hash table
* suiting all your needs (at least those which you've revealed :) ).
*
* After including this file, all parameter macros are automatically
* undef'd.
*/
#ifndef _UCW_HASHFUNC_H
#include <ucw/hashfunc.h>
#endif
#include <ucw/prime.h>
#include <string.h>
/* Initial setup of parameters */
#if !defined(HASH_NODE) || !defined(HASH_PREFIX)
#error Some of the mandatory configuration macros are missing.
#endif
#if defined(HASH_KEY_ATOMIC) && !defined(HASH_CONSERVE_SPACE)
#define HASH_CONSERVE_SPACE
#endif
#define P(x) HASH_PREFIX(x)
/* Declare buckets and the hash table */
typedef HASH_NODE P(node);
typedef struct P(bucket) {
struct P(bucket) *next;
#ifndef HASH_CONSERVE_SPACE
uint hash;
#endif
P(node) n;
} P(bucket);
struct P(table) {
#ifdef HASH_TABLE_VARS
HASH_TABLE_VARS
#endif
uint hash_size;
uint hash_count, hash_max, hash_min, hash_hard_max;
P(bucket) **ht;
#ifdef HASH_AUTO_POOL
struct mempool *pool;
#endif
#ifdef HASH_AUTO_ELTPOOL
struct eltpool *eltpool;
#endif
};
#ifdef HASH_TABLE_DYNAMIC
#define T (*table)
#define TA struct P(table) *table
#define TAC TA,
#define TAU TA UNUSED
#define TAUC TA UNUSED,
#define TT table
#define TTC table,
#else
struct P(table) P(table);
#define T P(table)
#define TA void
#define TAC
#define TAU void
#define TAUC
#define TT
#define TTC
#endif
/* Preset parameters */
#if defined(HASH_KEY_ATOMIC)
#define HASH_KEY(x) x HASH_KEY_ATOMIC
#ifndef HASH_ATOMIC_TYPE
# define HASH_ATOMIC_TYPE int
#endif
#define HASH_KEY_DECL HASH_ATOMIC_TYPE HASH_KEY( )
#ifndef HASH_GIVE_HASHFN
# define HASH_GIVE_HASHFN
static inline int P(hash) (TAUC HASH_ATOMIC_TYPE x)
{ return ((sizeof(x) <= 4) ? hash_u32(x) : hash_u64(x)); }
#endif
#ifndef HASH_GIVE_EQ
# define HASH_GIVE_EQ
static inline int P(eq) (TAUC HASH_ATOMIC_TYPE x, HASH_ATOMIC_TYPE y)
{ return x == y; }
#endif
#ifndef HASH_GIVE_INIT_KEY
# define HASH_GIVE_INIT_KEY
static inline void P(init_key) (TAUC P(node) *n, HASH_ATOMIC_TYPE k)
{ HASH_KEY(n->) = k; }
#endif
#elif defined(HASH_KEY_MEMORY)
#define HASH_KEY(x) x HASH_KEY_MEMORY
#define HASH_KEY_DECL byte HASH_KEY( )[HASH_KEY_SIZE]
#ifndef HASH_GIVE_HASHFN
# define HASH_GIVE_HASHFN
static inline int P(hash) (TAUC byte *x)
{ return hash_block(x, HASH_KEY_SIZE); }
#endif
#ifndef HASH_GIVE_EQ
# define HASH_GIVE_EQ
static inline int P(eq) (TAUC byte *x, byte *y)
{ return !memcmp(x, y, HASH_KEY_SIZE); }
#endif
#ifndef HASH_GIVE_INIT_KEY
# define HASH_GIVE_INIT_KEY
static inline void P(init_key) (TAUC P(node) *n, byte *k)
{ memcpy(HASH_KEY(n->), k, HASH_KEY_SIZE); }
#endif
#elif defined(HASH_KEY_STRING) || defined(HASH_KEY_ENDSTRING)
#ifdef HASH_KEY_STRING
# define HASH_KEY(x) x HASH_KEY_STRING
# ifndef HASH_GIVE_INIT_KEY
# define HASH_GIVE_INIT_KEY
static inline void P(init_key) (TAUC P(node) *n, char *k)
{ HASH_KEY(n->) = k; }
# endif
#else
# define HASH_KEY(x) x HASH_KEY_ENDSTRING
# define HASH_GIVE_EXTRA_SIZE
static inline int P(extra_size) (TAUC char *k)
{ return strlen(k); }
# ifndef HASH_GIVE_INIT_KEY
# define HASH_GIVE_INIT_KEY
static inline void P(init_key) (TAUC P(node) *n, char *k)
{ strcpy(HASH_KEY(n->), k); }
# endif
#endif
#define HASH_KEY_DECL char *HASH_KEY( )
#ifndef HASH_GIVE_HASHFN
#define HASH_GIVE_HASHFN
static inline uint P(hash) (TAUC char *k)
{
# ifdef HASH_NOCASE
return hash_string_nocase(k);
# else
return hash_string(k);
# endif
}
#endif
#ifndef HASH_GIVE_EQ
# define HASH_GIVE_EQ
static inline int P(eq) (TAUC char *x, char *y)
{
# ifdef HASH_NOCASE
return !strcasecmp(x,y);
# else
return !strcmp(x,y);
# endif
}
#endif
#elif defined(HASH_KEY_COMPLEX)
#define HASH_KEY(x) HASH_KEY_COMPLEX(x)
#else
#error You forgot to set the hash key type.
#endif
/* Defaults for missing parameters */
#ifndef HASH_GIVE_HASHFN
#error Unable to determine which hash function to use.
#endif
#ifndef HASH_GIVE_EQ
#error Unable to determine how to compare two keys.
#endif
#ifdef HASH_GIVE_EXTRA_SIZE
/* This trickery is needed to avoid `unused parameter' warnings */
#define HASH_EXTRA_SIZE(x) P(extra_size)(TTC x)
#else
/*
* Beware, C macros are expanded iteratively, not recursively,
* hence we get only a _single_ argument, although the expansion
* of HASH_KEY contains commas.
*/
#define HASH_EXTRA_SIZE(x) 0
#endif
#ifndef HASH_GIVE_INIT_KEY
#error Unable to determine how to initialize keys.
#endif
#ifndef HASH_GIVE_INIT_DATA
static inline void P(init_data) (TAUC P(node) *n UNUSED)
{
}
#endif
#ifdef HASH_GIVE_ALLOC
/* If the caller has requested to use his own allocation functions, do so */
static inline void P(init_alloc) (TAU) { }
static inline void P(cleanup_alloc) (TAU) { }
#elif defined(HASH_USE_POOL)
/* If the caller has requested to use his mempool, do so */
#include <ucw/mempool.h>
static inline void * P(alloc) (TAUC uint size) { return mp_alloc_fast(HASH_USE_POOL, size); }
static inline void P(free) (TAUC void *x UNUSED) { }
static inline void P(init_alloc) (TAU) { }
static inline void P(cleanup_alloc) (TAU) { }
#elif defined(HASH_AUTO_POOL)
/* Use our own pools */
#include <ucw/mempool.h>
static inline void * P(alloc) (TAUC uint size) { return mp_alloc_fast(T.pool, size); }
static inline void P(free) (TAUC void *x UNUSED) { }
static inline void P(init_alloc) (TAU) { T.pool = mp_new(HASH_AUTO_POOL); }
static inline void P(cleanup_alloc) (TAU) { mp_delete(T.pool); }
#define HASH_USE_POOL
#elif defined(HASH_USE_ELTPOOL)
/* If the caller has requested to use his eltpool, do so */
#include <ucw/eltpool.h>
static inline void * P(alloc) (TAUC uint size UNUSED) { ASSERT(size <= (HASH_USE_ELTPOOL)->elt_size); return ep_alloc(HASH_USE_ELTPOOL); }
static inline void P(free) (TAUC void *x) { ep_free(HASH_USE_ELTPOOL, x); }
static inline void P(init_alloc) (TAU) { }
static inline void P(cleanup_alloc) (TAU) { }
#elif defined(HASH_AUTO_ELTPOOL)
/* Use our own eltpools */
#include <ucw/eltpool.h>
static inline void * P(alloc) (TAUC uint size UNUSED) { return ep_alloc(T.eltpool); }
static inline void P(free) (TAUC void *x) { ep_free(T.eltpool, x); }
static inline void P(init_alloc) (TAU) { T.eltpool = ep_new(sizeof(P(bucket)), HASH_AUTO_ELTPOOL); }
static inline void P(cleanup_alloc) (TAU) { ep_delete(T.eltpool); }
#define HASH_USE_ELTPOOL
#else
/* The default allocation method */
static inline void * P(alloc) (TAUC uint size) { return xmalloc(size); }
static inline void P(free) (TAUC void *x) { xfree(x); }
static inline void P(init_alloc) (TAU) { }
static inline void P(cleanup_alloc) (TAU) { }
#endif
#if defined(HASH_USE_ELTPOOL) && defined(HASH_GIVE_EXTRA_SIZE)
#error Eltpools not supported in combination with variable-sized nodes
#endif
#ifdef HASH_GIVE_TABLE_ALLOC
/* If the caller has requested to use his own allocation functions, do so */
#elif defined(HASH_TABLE_ALLOC)
#ifdef HASH_USE_ELTPOOL
#error HASH_TABLE_ALLOC not supported in combination with eltpools
#endif
static inline void * P(table_alloc) (TAUC uint size) { return P(alloc)(TTC size); }
static inline void P(table_free) (TAUC void *x) { P(free)(TTC x); }
#else
static inline void * P(table_alloc) (TAUC uint size) { return xmalloc(size); }
static inline void P(table_free) (TAUC void *x) { xfree(x); }
#endif
#if defined(HASH_USE_POOL) && defined(HASH_TABLE_ALLOC) && !defined(HASH_TABLE_GROWING)
#define HASH_TABLE_GROWING
#endif
#ifndef HASH_DEFAULT_SIZE
#define HASH_DEFAULT_SIZE 32
#endif
#ifndef HASH_FN_BITS
#define HASH_FN_BITS 32
#endif
#ifdef HASH_ZERO_FILL
static inline void * P(new_bucket)(TAUC uint size)
{
byte *buck = P(alloc)(TTC size);
bzero(buck, size);
return buck;
}
#else
static inline void * P(new_bucket)(TAUC uint size) { return P(alloc)(TTC size); }
#endif
/* Now the operations */
static void P(alloc_table) (TAU)
{
T.hash_size = next_table_prime(T.hash_size);
T.ht = P(table_alloc)(TTC sizeof(void *) * T.hash_size);
bzero(T.ht, sizeof(void *) * T.hash_size);
if (2*T.hash_size < T.hash_hard_max)
T.hash_max = 2*T.hash_size;
else
T.hash_max = ~0U;
#ifndef HASH_TABLE_GROWING
if (T.hash_size/2 > HASH_DEFAULT_SIZE)
T.hash_min = T.hash_size/4;
else
#endif
T.hash_min = 0;
}
/**
* Initializes the hash table.
* This one is available no matter what `HASH_WANT_` macros you defined or not.
**/
static void HASH_PREFIX(init)(TA)
{
T.hash_count = 0;
T.hash_size = HASH_DEFAULT_SIZE;
#if HASH_FN_BITS < 28
T.hash_hard_max = 1 << HASH_FN_BITS;
#else
T.hash_hard_max = 1 << 28;
#endif
P(init_alloc)(TT);
P(alloc_table)(TT);
}
#ifdef HASH_WANT_CLEANUP
/**
* Deallocates the hash table, including the nodes.
* It is available if you defined <<want_cleanup,`HASH_WANT_CLEANUP`>>.
**/
static void HASH_PREFIX(cleanup)(TA)
{
#ifndef HASH_USE_POOL
uint i;
P(bucket) *b, *bb;
for (i=0; i<T.hash_size; i++)
for (b=T.ht[i]; b; b=bb)
{
bb = b->next;
P(free)(TTC b);
}
#endif
P(cleanup_alloc)(TT);
P(table_free)(TTC T.ht);
}
#endif
static inline uint P(bucket_hash) (TAUC P(bucket) *b)
{
#ifdef HASH_CONSERVE_SPACE
return P(hash)(TTC HASH_KEY(b->n.));
#else
return b->hash;
#endif
}
static void P(rehash) (TAC uint size)
{
P(bucket) *b, *nb;
P(bucket) **oldt = T.ht, **newt;
uint oldsize = T.hash_size;
uint i, h;
DBG("Rehashing %d->%d at count %d", oldsize, size, T.hash_count);
T.hash_size = size;
P(alloc_table)(TT);
newt = T.ht;
for (i=0; i<oldsize; i++)
{
b = oldt[i];
while (b)
{
nb = b->next;
h = P(bucket_hash)(TTC b) % T.hash_size;
b->next = newt[h];
newt[h] = b;
b = nb;
}
}
P(table_free)(TTC oldt);
}
#ifdef HASH_WANT_FIND
/**
* Finds a node with given key (specified in the @HAS_KEY_DECL parameter).
* If it does not exist, NULL is returned.
*
* Enabled by the <<want_find,`HASH_WANT_FIND`>> macro.
**/
static HASH_NODE* HASH_PREFIX(find)(TAC HASH_KEY_DECL)
{
uint h0 = P(hash) (TTC HASH_KEY( ));
uint h = h0 % T.hash_size;
P(bucket) *b;
for (b=T.ht[h]; b; b=b->next)
{
if (
#ifndef HASH_CONSERVE_SPACE
b->hash == h0 &&
#endif
P(eq)(TTC HASH_KEY( ), HASH_KEY(b->n.)))
return &b->n;
}
return NULL;
}
#endif
#ifdef HASH_WANT_FIND_NEXT
/**
* Finds next node with the same key. Returns NULL if it does not exist.
*
* Enabled by the <<want_find_next,`HASH_WANT_FIND_NEXT`>> macro.
**/
static HASH_NODE* HASH_PREFIX(find_next)(TAC P(node) *start)
{
#ifndef HASH_CONSERVE_SPACE
uint h0 = P(hash) (TTC HASH_KEY(start->));
#endif
P(bucket) *b = SKIP_BACK(P(bucket), n, start);
for (b=b->next; b; b=b->next)
{
if (
#ifndef HASH_CONSERVE_SPACE
b->hash == h0 &&
#endif
P(eq)(TTC HASH_KEY(start->), HASH_KEY(b->n.)))
return &b->n;
}
return NULL;
}
#endif
#ifdef HASH_WANT_NEW
/**
* Generates a new node with a given key.
*
* Enabled by the <<want_new,`HASH_WANT_NEW`>> macro.
**/
static HASH_NODE * HASH_PREFIX(new)(TAC HASH_KEY_DECL)
{
uint h0, h;
P(bucket) *b;
h0 = P(hash) (TTC HASH_KEY( ));
h = h0 % T.hash_size;
b = P(new_bucket) (TTC sizeof(struct P(bucket)) + HASH_EXTRA_SIZE(HASH_KEY( )));
b->next = T.ht[h];
T.ht[h] = b;
#ifndef HASH_CONSERVE_SPACE
b->hash = h0;
#endif
P(init_key)(TTC &b->n, HASH_KEY( ));
P(init_data)(TTC &b->n);
if (T.hash_count++ >= T.hash_max)
P(rehash)(TTC 2*T.hash_size);
return &b->n;
}
#endif
#ifdef HASH_WANT_LOOKUP
#ifdef HASH_LOOKUP_DETECT_NEW
/**
* Finds a node with a given key. If it does not exist, a new one is created.
* It is strongly recommended to use <<give_init_data,`HASH_GIVE_INIT_DATA`>>.
*
* This one is enabled by the <<want_lookup,`HASH_WANT_LOOKUP`>> macro.
* The @new_item argument is available only if <<lookup_detect_new,`HASH_LOOKUP_DETECT_NEW`>> was given.
**/
static HASH_NODE* HASH_PREFIX(lookup)(TAC HASH_KEY_DECL, int *new_item)
#else
static HASH_NODE* HASH_PREFIX(lookup)(TAC HASH_KEY_DECL)
#endif
{
uint h0 = P(hash) (TTC HASH_KEY( ));
uint h = h0 % T.hash_size;
P(bucket) *b;
for (b=T.ht[h]; b; b=b->next)
{
if (
#ifndef HASH_CONSERVE_SPACE
b->hash == h0 &&
#endif
P(eq)(TTC HASH_KEY( ), HASH_KEY(b->n.))) {
#ifdef HASH_LOOKUP_DETECT_NEW
*new_item = 0;
#endif
return &b->n;
}
}
b = P(new_bucket) (TTC sizeof(struct P(bucket)) + HASH_EXTRA_SIZE(HASH_KEY( )));
b->next = T.ht[h];
T.ht[h] = b;
#ifndef HASH_CONSERVE_SPACE
b->hash = h0;
#endif
P(init_key)(TTC &b->n, HASH_KEY( ));
P(init_data)(TTC &b->n);
if (T.hash_count++ >= T.hash_max)
P(rehash)(TTC 2*T.hash_size);
#ifdef HASH_LOOKUP_DETECT_NEW
*new_item = 1;
#endif
return &b->n;
}
#endif
#ifdef HASH_WANT_DELETE
/**
* Removes a node with the given key from hash table and deallocates it.
*
* Success is returned.
*
* This one is enabled by <<want_delete,`HASH_WANT_DELETE`>> macro.
**/
static int HASH_PREFIX(delete)(TAC HASH_KEY_DECL)
{
uint h0 = P(hash) (TTC HASH_KEY( ));
uint h = h0 % T.hash_size;
P(bucket) *b, **bb;
for (bb=&T.ht[h]; b=*bb; bb=&b->next)
{
if (
#ifndef HASH_CONSERVE_SPACE
b->hash == h0 &&
#endif
P(eq)(TTC HASH_KEY( ), HASH_KEY(b->n.)))
{
*bb = b->next;
P(free)(TTC b);
T.hash_count--;
#ifndef HASH_TABLE_GROWING
if (T.hash_count < T.hash_min)
P(rehash)(TTC T.hash_size/2);
#endif
return 1;
}
}
return 0;
}
#endif
#ifdef HASH_WANT_REMOVE
/**
* Removes a given node and deallocates it.
* It differs from <<fun__GENERIC_LINK|HASH_PREFIX|delete,`HASH_PREFIX(delete)()`>>
* in its type of parameter -- this one deletes a specific node, that one looks for it by a key.
*
* Enabled by <<want_remove,`HASH_WANT_REMOVE`>> macro.
**/
static void HASH_PREFIX(remove)(TAC HASH_NODE *n)
{
P(bucket) *x = SKIP_BACK(struct P(bucket), n, n);
uint h0 = P(bucket_hash)(TTC x);
uint h = h0 % T.hash_size;
P(bucket) *b, **bb;
for (bb=&T.ht[h]; (b=*bb) && b != x; bb=&b->next)
;
ASSERT(b);
*bb = b->next;
P(free)(TTC b);
T.hash_count--;
#ifndef HASH_TABLE_GROWING
if (T.hash_count < T.hash_min)
P(rehash)(TTC T.hash_size/2);
#endif
}
#endif
/* And the iterator */
#ifndef HASH_FOR_ALL
#define HASH_FOR_ALL_DYNAMIC(h_px, h_table, h_var) \
do { \
uint h_slot; \
struct GLUE_(h_px,bucket) *h_buck; \
for (h_slot=0; h_slot < (h_table)->hash_size; h_slot++) \
for (h_buck = (h_table)->ht[h_slot]; h_buck; h_buck = h_buck->next) \
{ \
GLUE_(h_px,node) *h_var = &h_buck->n;
#define HASH_FOR_ALL(h_px, h_var) HASH_FOR_ALL_DYNAMIC(h_px, &GLUE_(h_px,table), h_var)
#define HASH_END_FOR } } while(0)
#define HASH_BREAK
#define HASH_CONTINUE continue
#endif
/* Finally, undefine all the parameters */
#undef P
#undef T
#undef TA
#undef TAC
#undef TAU
#undef TAUC
#undef TT
#undef TTC
#undef HASH_ATOMIC_TYPE
#undef HASH_CONSERVE_SPACE
#undef HASH_DEFAULT_SIZE
#undef HASH_EXTRA_SIZE
#undef HASH_FN_BITS
#undef HASH_GIVE_ALLOC
#undef HASH_GIVE_TABLE_ALLOC
#undef HASH_GIVE_EQ
#undef HASH_GIVE_EXTRA_SIZE
#undef HASH_GIVE_HASHFN
#undef HASH_GIVE_INIT_DATA
#undef HASH_GIVE_INIT_KEY
#undef HASH_KEY
#undef HASH_KEY_ATOMIC
#undef HASH_KEY_COMPLEX
#undef HASH_KEY_DECL
#undef HASH_KEY_ENDSTRING
#undef HASH_KEY_STRING
#undef HASH_KEY_MEMORY
#undef HASH_KEY_SIZE
#undef HASH_NOCASE
#undef HASH_NODE
#undef HASH_PREFIX
#undef HASH_USE_POOL
#undef HASH_AUTO_POOL
#undef HASH_USE_ELTPOOL
#undef HASH_AUTO_ELTPOOL
#undef HASH_WANT_CLEANUP
#undef HASH_WANT_DELETE
#undef HASH_WANT_FIND
#undef HASH_WANT_FIND_NEXT
#undef HASH_WANT_LOOKUP
#undef HASH_WANT_NEW
#undef HASH_WANT_REMOVE
#undef HASH_TABLE_ALLOC
#undef HASH_TABLE_GROWING
#undef HASH_TABLE_DYNAMIC
#undef HASH_TABLE_VARS
#undef HASH_ZERO_FILL
#undef HASH_LOOKUP_DETECT_NEW