You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1109 lines
29 KiB
1109 lines
29 KiB
/*
|
|
* UCW Library -- Red-black trees
|
|
*
|
|
* (c) 2002--2005, Robert Spalek <robert@ucw.cz>
|
|
*
|
|
* Skeleton based on hash-tables by:
|
|
*
|
|
* (c) 2002, Martin Mares <mj@ucw.cz>
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Data structure description:
|
|
*
|
|
* A red-black tree is a binary search tree, where records are stored
|
|
* in nodes (may be also leaves). Every node has a colour. The
|
|
* following restrictions hold:
|
|
*
|
|
* - a parent of a red node is black
|
|
* - every path from the root to a node with less than 2 children
|
|
* contains the same number of black nodes
|
|
*
|
|
* A usual interpretation is, that leaves are intervals between records
|
|
* and contain no data. Every leaf is black. This is equivalent, but
|
|
* saves the space.
|
|
*/
|
|
|
|
/*
|
|
* This is not a normal header file, it's a generator of red-black trees.
|
|
* Each time you include it with parameters set in the corresponding
|
|
* preprocessor macros, it generates a tree structure with the parameters
|
|
* given.
|
|
*
|
|
* You need to specify:
|
|
*
|
|
* TREE_NODE data type where a node dwells (usually a struct).
|
|
* TREE_PREFIX(x) macro to add a name prefix (used on all global names
|
|
* defined by the tree generator).
|
|
*
|
|
* Then decide on type of keys:
|
|
*
|
|
* TREE_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
|
|
* a type which can be compared using '>', `==', and '<')
|
|
* & TREE_ATOMIC_TYPE (defaults to int).
|
|
* | TREE_KEY_STRING=f use node->f as a string key, allocated
|
|
* separately from the rest of the node.
|
|
* | TREE_KEY_ENDSTRING=f use node->f as a string key, allocated
|
|
* automatically at the end of the node struct
|
|
* (to be declared as "char f[1]" at the end).
|
|
* | TREE_KEY_COMPLEX use a multi-component key; as the name suggests,
|
|
* the passing of parameters is a bit complex then.
|
|
* The TREE_KEY_COMPLEX(x) macro should expand to
|
|
* `x k1, x k2, ... x kn' and you should also define:
|
|
* & TREE_KEY_DECL declaration of function parameters in which key
|
|
* should be passed to all tree operations.
|
|
* That is, `type1 k1, type2 k2, ... typen kn'.
|
|
* With complex keys, TREE_GIVE_CMP is mandatory.
|
|
*
|
|
* Then specify what operations you request (all names are automatically
|
|
* prefixed by calling TREE_PREFIX):
|
|
*
|
|
* <always defined> init() -- initialize the tree.
|
|
* TREE_WANT_CLEANUP cleanup() -- deallocate the tree.
|
|
* TREE_WANT_FIND node *find(key) -- find first node with the specified
|
|
* key, return NULL if no such node exists.
|
|
* TREE_WANT_FIND_NEXT node *find_next(node *start) -- find next node with the
|
|
* specified key, return NULL if no such node exists.
|
|
* Implies TREE_DUPLICATES.
|
|
* TREE_WANT_SEARCH node *search(key) -- find the node with the specified
|
|
* or, if it does not exist, the nearest one.
|
|
* TREE_WANT_SEARCH_DOWN node *search_down(key) -- find either the node with
|
|
* specified value, or if it does not exist, the node
|
|
* with nearest smaller value.
|
|
* TREE_WANT_SEARCH_UP node *search_up(key) -- find either the node with
|
|
* specified value, or if it does not exist, the node
|
|
* with nearest greater value.
|
|
* TREE_WANT_BOUNDARY node *boundary(uint direction) -- finds smallest
|
|
* (direction==0) or largest (direction==1) node.
|
|
* TREE_WANT_ADJACENT node *adjacent(node *, uint direction) -- finds next
|
|
* (direction==1) or previous (direction==0) node.
|
|
* TREE_WANT_NEW node *new(key) -- create new node with given key.
|
|
* If it already exists, it is created as the last one.
|
|
* TREE_WANT_LOOKUP node *lookup(key) -- find node with given key,
|
|
* if it doesn't exist, create it. Defining
|
|
* TREE_GIVE_INIT_DATA is strongly recommended.
|
|
* TREE_WANT_DELETE int delete(key) -- delete and deallocate node
|
|
* with a given key. Returns success.
|
|
* TREE_WANT_REMOVE remove(node *) -- delete and deallocate given node.
|
|
*
|
|
* TREE_WANT_DUMP dump() -- dumps the whole tree to stdout
|
|
*
|
|
* You can also supply several functions:
|
|
*
|
|
* TREE_GIVE_CMP int cmp(key1, key2) -- return -1, 0, and 1 according to
|
|
* the relation of keys. By default, we use <, ==, > for
|
|
* atomic types and either strcmp or strcasecmp for
|
|
* strings.
|
|
* TREE_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
|
|
* node should be allocated for dynamic data. Default=0
|
|
* or length of the string with TREE_KEY_ENDSTRING.
|
|
* TREE_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
|
|
* created node. Defaults: assignment for atomic keys
|
|
* and static strings, strcpy for end-allocated strings.
|
|
* TREE_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
|
|
* newly created node. Very useful for lookup operations.
|
|
* TREE_GIVE_ALLOC void *alloc(uint size) -- allocate space for
|
|
* a node. By default, xmalloc() is used unless overridden
|
|
* by TREE_AUTO_POOL.
|
|
* void free(void *) -- the converse.
|
|
*
|
|
* ... and a couple of extra parameters:
|
|
*
|
|
* TREE_NOCASE string comparisons should be case-insensitive.
|
|
* TREE_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
|
|
* TREE_USE_POOL=pool Allocate all nodes from given mempool. Please keep
|
|
* in mind that deleted/removed nodes cannot be freed.
|
|
* TREE_AUTO_POOL=size Automatically allocate nodes from an internal memory
|
|
* pool of a given block size. This is either an eltpool
|
|
* (for fixed-size nodes), or a mempool for variable-sized
|
|
* ones (in this case, deletes/removes are not deallocated).
|
|
* TREE_GLOBAL Functions are exported (i.e., not static).
|
|
* TREE_CONSERVE_SPACE Use as little space as possible at the price of a
|
|
* little slowdown.
|
|
* TREE_DUPLICATES Records with duplicate keys are allowed.
|
|
* TREE_MAX_DEPTH Maximal depth of a tree (for stack allocation).
|
|
*
|
|
* If you set TREE_WANT_ITERATOR, you also get a iterator macro at no
|
|
* extra charge:
|
|
*
|
|
* TREE_FOR_ALL(tree_prefix, tree_pointer, variable)
|
|
* {
|
|
* // node *variable gets declared automatically
|
|
* do_something_with_node(variable);
|
|
* // use TREE_BREAK and TREE_CONTINUE instead of break and continue
|
|
* // you must not alter contents of the tree here
|
|
* }
|
|
* TREE_END_FOR;
|
|
*
|
|
* Then include <ucw/redblack.h> and voila, you have a tree suiting all your
|
|
* needs (at least those which you've revealed :) ).
|
|
*
|
|
* After including this file, all parameter macros are automatically
|
|
* undef'd.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#if !defined(TREE_NODE) || !defined(TREE_PREFIX)
|
|
#error Some of the mandatory configuration macros are missing.
|
|
#endif
|
|
|
|
#define P(x) TREE_PREFIX(x)
|
|
|
|
/* Declare buckets and the tree. */
|
|
|
|
typedef TREE_NODE P(node);
|
|
|
|
#if defined(TREE_WANT_FIND_NEXT) || defined(TREE_WANT_ADJACENT) || defined(TREE_WANT_ITERATOR) || defined(TREE_WANT_REMOVE)
|
|
# define TREE_STORE_PARENT
|
|
#endif
|
|
|
|
#ifdef TREE_AUTO_POOL
|
|
# if defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING)
|
|
# define TREE_AUTO_MEMPOOL
|
|
# include <ucw/mempool.h>
|
|
# else
|
|
# define TREE_AUTO_ELTPOOL
|
|
# include <ucw/eltpool.h>
|
|
# endif
|
|
#endif
|
|
|
|
typedef struct P(bucket) {
|
|
struct P(bucket) *son[2];
|
|
#ifdef TREE_STORE_PARENT
|
|
struct P(bucket) *parent;
|
|
#endif
|
|
#if !defined(TREE_CONSERVE_SPACE) && (defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING))
|
|
uint red_flag:1;
|
|
#endif
|
|
P(node) n;
|
|
#if !defined(TREE_CONSERVE_SPACE) && !defined(TREE_GIVE_EXTRA_SIZE) && !defined(TREE_KEY_ENDSTRING)
|
|
uint red_flag:1;
|
|
#endif
|
|
} P(bucket);
|
|
|
|
struct P(tree) {
|
|
uint count;
|
|
uint height; /* of black nodes */
|
|
P(bucket) *root;
|
|
#ifdef TREE_AUTO_MEMPOOL
|
|
struct mempool *mp;
|
|
#endif
|
|
#ifdef TREE_AUTO_ELTPOOL
|
|
struct eltpool *ep;
|
|
#endif
|
|
};
|
|
|
|
typedef struct P(stack_entry) {
|
|
P(bucket) *buck;
|
|
uint son;
|
|
} P(stack_entry);
|
|
|
|
#define T struct P(tree)
|
|
|
|
/* Preset parameters */
|
|
|
|
#if defined(TREE_KEY_ATOMIC)
|
|
|
|
#define TREE_KEY(x) x TREE_KEY_ATOMIC
|
|
|
|
#ifndef TREE_ATOMIC_TYPE
|
|
# define TREE_ATOMIC_TYPE int
|
|
#endif
|
|
#define TREE_KEY_DECL TREE_ATOMIC_TYPE TREE_KEY()
|
|
|
|
#ifndef TREE_GIVE_CMP
|
|
# define TREE_GIVE_CMP
|
|
static inline int P(cmp) (TREE_ATOMIC_TYPE x, TREE_ATOMIC_TYPE y)
|
|
{
|
|
if (x < y)
|
|
return -1;
|
|
else if (x > y)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifndef TREE_GIVE_INIT_KEY
|
|
# define TREE_GIVE_INIT_KEY
|
|
static inline void P(init_key) (P(node) *n, TREE_ATOMIC_TYPE k)
|
|
{ TREE_KEY(n->) = k; }
|
|
#endif
|
|
|
|
#elif defined(TREE_KEY_STRING) || defined(TREE_KEY_ENDSTRING)
|
|
|
|
#ifdef TREE_KEY_STRING
|
|
# define TREE_KEY(x) x TREE_KEY_STRING
|
|
# ifndef TREE_GIVE_INIT_KEY
|
|
# define TREE_GIVE_INIT_KEY
|
|
static inline void P(init_key) (P(node) *n, char *k)
|
|
{ TREE_KEY(n->) = k; }
|
|
# endif
|
|
#else
|
|
# define TREE_KEY(x) x TREE_KEY_ENDSTRING
|
|
# define TREE_GIVE_EXTRA_SIZE
|
|
static inline int P(extra_size) (char *k)
|
|
{ return strlen(k); }
|
|
# ifndef TREE_GIVE_INIT_KEY
|
|
# define TREE_GIVE_INIT_KEY
|
|
static inline void P(init_key) (P(node) *n, char *k)
|
|
{ strcpy(TREE_KEY(n->), k); }
|
|
# endif
|
|
#endif
|
|
#define TREE_KEY_DECL char *TREE_KEY()
|
|
|
|
#ifndef TREE_GIVE_CMP
|
|
# define TREE_GIVE_CMP
|
|
static inline int P(cmp) (char *x, char *y)
|
|
{
|
|
# ifdef TREE_NOCASE
|
|
return strcasecmp(x,y);
|
|
# else
|
|
return strcmp(x,y);
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
#elif defined(TREE_KEY_COMPLEX)
|
|
|
|
#define TREE_KEY(x) TREE_KEY_COMPLEX(x)
|
|
|
|
#else
|
|
#error You forgot to set the tree key type.
|
|
#endif
|
|
|
|
#ifndef TREE_CONSERVE_SPACE
|
|
static inline uint P(red_flag) (P(bucket) *node)
|
|
{ return node->red_flag; }
|
|
static inline void P(set_red_flag) (P(bucket) *node, uint flag)
|
|
{ node->red_flag = flag; }
|
|
static inline P(bucket) * P(tree_son) (P(bucket) *node, uint id)
|
|
{ return node->son[id]; }
|
|
static inline void P(set_tree_son) (P(bucket) *node, uint id, P(bucket) *son)
|
|
{ node->son[id] = son; }
|
|
#else
|
|
/* Pointers are aligned, hence we can use lower bits. */
|
|
static inline uint P(red_flag) (P(bucket) *node)
|
|
{ return ((uintptr_t) node->son[0]) & 1L; }
|
|
static inline void P(set_red_flag) (P(bucket) *node, uint flag)
|
|
{ node->son[0] = (void*) ( (((uintptr_t) node->son[0]) & ~1L) | (flag & 1L) ); }
|
|
static inline P(bucket) * P(tree_son) (P(bucket) *node, uint id)
|
|
{ return (void *) (((uintptr_t) node->son[id]) & ~1L); }
|
|
static inline void P(set_tree_son) (P(bucket) *node, uint id, P(bucket) *son)
|
|
{ node->son[id] = (void *) ((uintptr_t) son | (((uintptr_t) node->son[id]) & 1L) ); }
|
|
#endif
|
|
|
|
/* Defaults for missing parameters. */
|
|
|
|
#ifndef TREE_GIVE_CMP
|
|
#error Unable to determine how to compare two keys.
|
|
#endif
|
|
|
|
#ifdef TREE_GIVE_EXTRA_SIZE
|
|
/* This trickery is needed to avoid `unused parameter' warnings */
|
|
# define TREE_EXTRA_SIZE P(extra_size)
|
|
#else
|
|
/*
|
|
* Beware, C macros are expanded iteratively, not recursively,
|
|
* hence we get only a _single_ argument, although the expansion
|
|
* of TREE_KEY contains commas.
|
|
*/
|
|
# define TREE_EXTRA_SIZE(x) 0
|
|
#endif
|
|
|
|
#ifndef TREE_GIVE_INIT_KEY
|
|
# error Unable to determine how to initialize keys.
|
|
#endif
|
|
|
|
#ifndef TREE_GIVE_INIT_DATA
|
|
static inline void P(init_data) (P(node) *n UNUSED)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifndef TREE_GIVE_ALLOC
|
|
# ifdef TREE_USE_POOL
|
|
static inline void * P(alloc) (T *t UNUSED, uint size)
|
|
{ return mp_alloc_fast(TREE_USE_POOL, size); }
|
|
static inline void P(free) (T *t UNUSED, void *x UNUSED)
|
|
{ }
|
|
# elif defined(TREE_AUTO_MEMPOOL)
|
|
static inline void * P(alloc) (T *t, uint size)
|
|
{ return mp_alloc_fast(t->mp, size); }
|
|
static inline void P(free) (T *t UNUSED, void *x UNUSED)
|
|
{ }
|
|
# elif defined(TREE_AUTO_ELTPOOL)
|
|
static inline void * P(alloc) (T *t, uint size)
|
|
{ ASSERT(size == sizeof(P(bucket))); return ep_alloc(t->ep); }
|
|
static inline void P(free) (T *t, void *x)
|
|
{ ep_free(t->ep, x); }
|
|
# else
|
|
static inline void * P(alloc) (T *t UNUSED, uint size)
|
|
{ return xmalloc(size); }
|
|
|
|
static inline void P(free) (T *t UNUSED, void *x)
|
|
{ xfree(x); }
|
|
# endif
|
|
#endif
|
|
|
|
#ifdef TREE_GLOBAL
|
|
# define TREE_STATIC
|
|
#else
|
|
# define TREE_STATIC static
|
|
#endif
|
|
|
|
#ifndef TREE_MAX_DEPTH
|
|
# define TREE_MAX_DEPTH 64
|
|
#endif
|
|
|
|
#if defined(TREE_WANT_FIND_NEXT) && !defined(TREE_DUPLICATES)
|
|
# define TREE_DUPLICATES
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_LOOKUP
|
|
#ifndef TREE_WANT_FIND
|
|
# define TREE_WANT_FIND
|
|
#endif
|
|
#ifndef TREE_WANT_NEW
|
|
# define TREE_WANT_NEW
|
|
#endif
|
|
#endif
|
|
|
|
/* Now the operations */
|
|
|
|
TREE_STATIC void P(init) (T *t)
|
|
{
|
|
t->count = t->height = 0;
|
|
t->root = NULL;
|
|
#ifdef TREE_AUTO_MEMPOOL
|
|
t->mp = mp_new(TREE_AUTO_POOL);
|
|
#endif
|
|
#ifdef TREE_AUTO_ELTPOOL
|
|
t->ep = ep_new(sizeof(P(bucket)), (TREE_AUTO_POOL + sizeof(P(bucket)) - 1) / sizeof(P(bucket)));
|
|
#endif
|
|
}
|
|
|
|
#ifdef TREE_WANT_CLEANUP
|
|
static void P(cleanup_subtree) (T *t, P(bucket) *node)
|
|
{
|
|
if (!node)
|
|
return;
|
|
P(cleanup_subtree) (t, P(tree_son) (node, 0));
|
|
P(cleanup_subtree) (t, P(tree_son) (node, 1));
|
|
P(free) (t, node);
|
|
t->count--;
|
|
}
|
|
|
|
TREE_STATIC void P(cleanup) (T *t)
|
|
{
|
|
P(cleanup_subtree) (t, t->root);
|
|
ASSERT(!t->count);
|
|
t->height = 0;
|
|
#ifdef TREE_AUTO_MEMPOOL
|
|
mp_delete(t->mp);
|
|
t->mp = NULL;
|
|
#endif
|
|
#ifdef TREE_AUTO_ELTPOOL
|
|
ep_delete(t->ep);
|
|
t->ep = NULL;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static uint P(fill_stack) (P(stack_entry) *stack, uint max_depth, P(bucket) *node, TREE_KEY_DECL, uint son_id UNUSED)
|
|
{
|
|
uint i;
|
|
stack[0].buck = node;
|
|
for (i=0; stack[i].buck; i++)
|
|
{
|
|
int cmp;
|
|
cmp = P(cmp) (TREE_KEY(), TREE_KEY(stack[i].buck->n.));
|
|
if (cmp == 0)
|
|
break;
|
|
else if (cmp < 0)
|
|
stack[i].son = 0;
|
|
else
|
|
stack[i].son = 1;
|
|
ASSERT(i+1 < max_depth);
|
|
stack[i+1].buck = P(tree_son) (stack[i].buck, stack[i].son);
|
|
}
|
|
#ifdef TREE_DUPLICATES
|
|
if (stack[i].buck)
|
|
{
|
|
uint idx;
|
|
/* Find first/last of equal keys according to son_id. */
|
|
idx = P(fill_stack) (stack+i+1, max_depth-i-1,
|
|
P(tree_son) (stack[i].buck, son_id), TREE_KEY(), son_id);
|
|
if (stack[i+1+idx].buck)
|
|
{
|
|
stack[i].son = son_id;
|
|
i = i+1+idx;
|
|
}
|
|
}
|
|
#endif
|
|
stack[i].son = 10;
|
|
return i;
|
|
}
|
|
|
|
#ifdef TREE_WANT_FIND
|
|
TREE_STATIC P(node) * P(find) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(stack_entry) stack[TREE_MAX_DEPTH];
|
|
uint depth;
|
|
depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
|
|
return stack[depth].buck ? &stack[depth].buck->n : NULL;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_SEARCH_DOWN
|
|
TREE_STATIC P(node) * P(search_down) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(node) *last_right=NULL;
|
|
P(bucket) *node=t->root;
|
|
while(node)
|
|
{
|
|
int cmp;
|
|
cmp = P(cmp) (TREE_KEY(), TREE_KEY(node->n.));
|
|
if (cmp == 0)
|
|
return &node->n;
|
|
else if (cmp < 0)
|
|
node=P(tree_son) (node, 0);
|
|
else
|
|
{
|
|
last_right=&node->n;
|
|
node=P(tree_son) (node, 1);
|
|
}
|
|
}
|
|
return last_right;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_SEARCH_UP
|
|
TREE_STATIC P(node) * P(search_up) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(node) *last_left=NULL;
|
|
P(bucket) *node=t->root;
|
|
while(node)
|
|
{
|
|
int cmp;
|
|
cmp = P(cmp) (TREE_KEY(), TREE_KEY(node->n.));
|
|
if (cmp == 0)
|
|
return &node->n;
|
|
else if (cmp > 0)
|
|
node=P(tree_son) (node, 1);
|
|
else
|
|
{
|
|
last_left=&node->n;
|
|
node=P(tree_son) (node, 0);
|
|
}
|
|
}
|
|
return last_left;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_BOUNDARY
|
|
TREE_STATIC P(node) * P(boundary) (T *t, uint direction)
|
|
{
|
|
P(bucket) *n = t->root, *ns;
|
|
if (!n)
|
|
return NULL;
|
|
else
|
|
{
|
|
uint son = !!direction;
|
|
while ((ns = P(tree_son) (n, son)))
|
|
n = ns;
|
|
return &n->n;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_STORE_PARENT
|
|
TREE_STATIC P(node) * P(adjacent) (P(node) *start, uint direction)
|
|
{
|
|
P(bucket) *node = SKIP_BACK(P(bucket), n, start);
|
|
P(bucket) *next = P(tree_son) (node, direction);
|
|
if (next)
|
|
{
|
|
while (1)
|
|
{
|
|
node = P(tree_son) (next, 1 - direction);
|
|
if (!node)
|
|
break;
|
|
next = node;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
next = node->parent;
|
|
while (next && node == P(tree_son) (next, direction))
|
|
{
|
|
node = next;
|
|
next = node->parent;
|
|
}
|
|
if (!next)
|
|
return NULL;
|
|
ASSERT(node == P(tree_son) (next, 1 - direction));
|
|
}
|
|
return &next->n;
|
|
}
|
|
#endif
|
|
|
|
#if defined(TREE_DUPLICATES) || defined(TREE_WANT_DELETE) || defined(TREE_WANT_REMOVE)
|
|
static int P(find_next_node) (P(stack_entry) *stack, uint max_depth, uint direction)
|
|
{
|
|
uint depth = 0;
|
|
if (stack[0].buck)
|
|
{
|
|
ASSERT(depth+1 < max_depth);
|
|
stack[depth].son = direction;
|
|
stack[depth+1].buck = P(tree_son) (stack[depth].buck, direction);
|
|
depth++;
|
|
while (stack[depth].buck)
|
|
{
|
|
ASSERT(depth+1 < max_depth);
|
|
stack[depth].son = 1 - direction;
|
|
stack[depth+1].buck = P(tree_son) (stack[depth].buck, 1 - direction);
|
|
depth++;
|
|
}
|
|
}
|
|
return depth;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_FIND_NEXT
|
|
TREE_STATIC P(node) * P(find_next) (P(node) *start)
|
|
{
|
|
P(node) *next = P(adjacent) (start, 1);
|
|
if (next && P(cmp) (TREE_KEY(start->), TREE_KEY(next->)) == 0)
|
|
return next;
|
|
else
|
|
return NULL;
|
|
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_SEARCH
|
|
TREE_STATIC P(node) * P(search) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(stack_entry) stack[TREE_MAX_DEPTH];
|
|
uint depth;
|
|
depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
|
|
if (!stack[depth].buck)
|
|
{
|
|
if (depth > 0)
|
|
depth--;
|
|
else
|
|
return NULL;
|
|
}
|
|
return &stack[depth].buck->n;
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
#define TREE_TRACE(txt...) do { printf(txt); fflush(stdout); } while (0)
|
|
#else
|
|
#define TREE_TRACE(txt...)
|
|
#endif
|
|
|
|
static inline P(bucket) * P(rotation) (P(bucket) *node, uint son_id)
|
|
{
|
|
/* Destroys red_flag's in node, son. Returns new root. */
|
|
P(bucket) *son = P(tree_son) (node, son_id);
|
|
TREE_TRACE("Rotation (node %d, son %d), direction %d\n", node->n.key, son->n.key, son_id);
|
|
node->son[son_id] = P(tree_son) (son, 1-son_id);
|
|
son->son[1-son_id] = node;
|
|
#ifdef TREE_STORE_PARENT
|
|
if (node->son[son_id])
|
|
node->son[son_id]->parent = node;
|
|
son->parent = node->parent;
|
|
node->parent = son;
|
|
#endif
|
|
return son;
|
|
}
|
|
|
|
static void P(rotate_after_insert) (T *t, P(stack_entry) *stack, uint depth)
|
|
{
|
|
P(bucket) *node;
|
|
P(bucket) *parent, *grand, *uncle;
|
|
int s1, s2;
|
|
try_it_again:
|
|
node = stack[depth].buck;
|
|
ASSERT(P(red_flag) (node));
|
|
/* At this moment, node became red. The paths sum have
|
|
* been preserved, but we have to check the parental
|
|
* condition. */
|
|
if (depth == 0)
|
|
{
|
|
ASSERT(t->root == node);
|
|
return;
|
|
}
|
|
parent = stack[depth-1].buck;
|
|
if (!P(red_flag) (parent))
|
|
return;
|
|
if (depth == 1)
|
|
{
|
|
ASSERT(t->root == parent);
|
|
P(set_red_flag) (parent, 0);
|
|
t->height++;
|
|
return;
|
|
}
|
|
grand = stack[depth-2].buck;
|
|
ASSERT(!P(red_flag) (grand));
|
|
/* The parent is also red, the grandparent exists and it
|
|
* is black. */
|
|
s1 = stack[depth-1].son;
|
|
s2 = stack[depth-2].son;
|
|
uncle = P(tree_son) (grand, 1-s2);
|
|
if (uncle && P(red_flag) (uncle))
|
|
{
|
|
/* Red parent and uncle, black grandparent.
|
|
* Exchange and try another iteration. */
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (uncle, 0);
|
|
P(set_red_flag) (grand, 1);
|
|
depth -= 2;
|
|
TREE_TRACE("Swapping colours (parent %d, uncle %d, grand %d), passing thru\n", parent->n.key, uncle->n.key, grand->n.key);
|
|
goto try_it_again;
|
|
}
|
|
/* Black uncle and grandparent, we need to rotate. Test
|
|
* the direction. */
|
|
if (s1 == s2)
|
|
{
|
|
node = P(rotation) (grand, s2);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (grand, 1);
|
|
}
|
|
else
|
|
{
|
|
grand->son[s2] = P(rotation) (parent, s1);
|
|
node = P(rotation) (grand, s2);
|
|
P(set_red_flag) (grand, 1);
|
|
P(set_red_flag) (parent, 1);
|
|
P(set_red_flag) (node, 0);
|
|
}
|
|
if (depth >= 3)
|
|
P(set_tree_son) (stack[depth-3].buck, stack[depth-3].son, node);
|
|
else
|
|
t->root = node;
|
|
}
|
|
|
|
#ifdef TREE_WANT_NEW
|
|
TREE_STATIC P(node) * P(new) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(stack_entry) stack[TREE_MAX_DEPTH];
|
|
P(bucket) *added;
|
|
uint depth;
|
|
depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
|
|
#ifdef TREE_DUPLICATES
|
|
/* It is the last found value, hence everything in the right subtree is
|
|
* strongly _bigger_. */
|
|
depth += P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
|
|
#endif
|
|
ASSERT(!stack[depth].buck);
|
|
/* We are in a leaf, hence we can easily append a new leaf to it. */
|
|
added = P(alloc) (t, sizeof(struct P(bucket)) + TREE_EXTRA_SIZE(TREE_KEY()) );
|
|
added->son[0] = added->son[1] = NULL;
|
|
stack[depth].buck = added;
|
|
if (depth > 0)
|
|
{
|
|
#ifdef TREE_STORE_PARENT
|
|
added->parent = stack[depth-1].buck;
|
|
#endif
|
|
P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, added);
|
|
}
|
|
else
|
|
{
|
|
#ifdef TREE_STORE_PARENT
|
|
added->parent = NULL;
|
|
#endif
|
|
t->root = added;
|
|
}
|
|
P(set_red_flag) (added, 1); /* Set it red to not disturb the path sum. */
|
|
P(init_key) (&added->n, TREE_KEY());
|
|
P(init_data) (&added->n);
|
|
t->count++;
|
|
/* Let us reorganize the red_flag's and the structure of the tree. */
|
|
P(rotate_after_insert) (t, stack, depth);
|
|
return &added->n;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_LOOKUP
|
|
TREE_STATIC P(node) * P(lookup) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(node) *node;
|
|
node = P(find) (t, TREE_KEY());
|
|
if (node)
|
|
return node;
|
|
return P(new) (t, TREE_KEY());
|
|
}
|
|
#endif
|
|
|
|
#if defined(TREE_WANT_REMOVE) || defined(TREE_WANT_DELETE)
|
|
static void P(rotate_after_delete) (T *t, P(stack_entry) *stack, int depth)
|
|
{
|
|
uint iteration = 0;
|
|
P(bucket) *parent, *sibling, *instead;
|
|
uint parent_red, del_son, sibl_red;
|
|
missing_black:
|
|
if (depth < 0)
|
|
{
|
|
t->height--;
|
|
return;
|
|
}
|
|
parent = stack[depth].buck;
|
|
parent_red = P(red_flag) (parent);
|
|
del_son = stack[depth].son;
|
|
/* For the 1st iteration: we have deleted parent->son[del_son], which
|
|
* was a black node with no son. Hence there is one mising black
|
|
* vertex in that path, which we are going to fix now.
|
|
*
|
|
* For other iterations: in that path, there is also missing a black
|
|
* node. */
|
|
if (!iteration)
|
|
ASSERT(!P(tree_son) (parent, del_son));
|
|
sibling = P(tree_son) (parent, 1-del_son);
|
|
ASSERT(sibling);
|
|
sibl_red = P(red_flag) (sibling);
|
|
instead = NULL;
|
|
if (!sibl_red)
|
|
{
|
|
P(bucket) *son[2];
|
|
uint red[2];
|
|
son[0] = P(tree_son) (sibling, 0);
|
|
son[1] = P(tree_son) (sibling, 1);
|
|
red[0] = son[0] ? P(red_flag) (son[0]) : 0;
|
|
red[1] = son[1] ? P(red_flag) (son[1]) : 0;
|
|
if (!red[0] && !red[1])
|
|
{
|
|
P(set_red_flag) (sibling, 1);
|
|
P(set_red_flag) (parent, 0);
|
|
if (parent_red)
|
|
return;
|
|
else
|
|
{
|
|
depth--;
|
|
iteration++;
|
|
TREE_TRACE("Swapping colours (parent %d, sibling %d), passing thru\n", parent->n.key, sibling->n.key);
|
|
goto missing_black;
|
|
}
|
|
} else if (!red[del_son])
|
|
{
|
|
instead = P(rotation) (parent, 1-del_son);
|
|
P(set_red_flag) (instead, parent_red);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (son[1-del_son], 0);
|
|
} else /* red[del_son] */
|
|
{
|
|
parent->son[1-del_son] = P(rotation) (sibling, del_son);
|
|
instead = P(rotation) (parent, 1-del_son);
|
|
P(set_red_flag) (instead, parent_red);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (sibling, 0);
|
|
}
|
|
} else /* sibl_red */
|
|
{
|
|
P(bucket) *grand[2], *son;
|
|
uint red[2];
|
|
ASSERT(!parent_red);
|
|
son = P(tree_son) (sibling, del_son);
|
|
ASSERT(son && !P(red_flag) (son));
|
|
grand[0] = P(tree_son) (son, 0);
|
|
grand[1] = P(tree_son) (son, 1);
|
|
red[0] = grand[0] ? P(red_flag) (grand[0]) : 0;
|
|
red[1] = grand[1] ? P(red_flag) (grand[1]) : 0;
|
|
if (!red[0] && !red[1])
|
|
{
|
|
instead = P(rotation) (parent, 1-del_son);
|
|
P(set_red_flag) (instead, 0);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (son, 1);
|
|
}
|
|
else if (!red[del_son])
|
|
{
|
|
parent->son[1-del_son] = P(rotation) (sibling, del_son);
|
|
instead = P(rotation) (parent, 1-del_son);
|
|
P(set_red_flag) (instead, 0);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (sibling, 1);
|
|
P(set_red_flag) (grand[1-del_son], 0);
|
|
} else /* red[del_son] */
|
|
{
|
|
sibling->son[del_son] = P(rotation) (son, del_son);
|
|
parent->son[1-del_son] = P(rotation) (sibling, del_son);
|
|
instead = P(rotation) (parent, 1-del_son);
|
|
P(set_red_flag) (instead, 0);
|
|
P(set_red_flag) (parent, 0);
|
|
P(set_red_flag) (sibling, 1);
|
|
P(set_red_flag) (son, 0);
|
|
}
|
|
}
|
|
/* We have performed all desired rotations and need to store the new
|
|
* pointer to the subtree. */
|
|
ASSERT(instead);
|
|
if (depth > 0)
|
|
P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, instead);
|
|
else
|
|
t->root = instead;
|
|
}
|
|
|
|
static void P(remove_by_stack) (T *t, P(stack_entry) *stack, uint depth)
|
|
{
|
|
P(bucket) *node = stack[depth].buck;
|
|
P(bucket) *son;
|
|
uint i;
|
|
for (i=0; i<depth; i++)
|
|
ASSERT(P(tree_son) (stack[i].buck, stack[i].son) == stack[i+1].buck);
|
|
if (P(tree_son) (node, 0) && P(tree_son) (node, 1))
|
|
{
|
|
P(bucket) *xchg;
|
|
uint flag_node, flag_xchg;
|
|
uint d = P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
|
|
|
|
ASSERT(d >= 2);
|
|
d--;
|
|
xchg = stack[depth+d].buck;
|
|
flag_node = P(red_flag) (node);
|
|
flag_xchg = P(red_flag) (xchg);
|
|
ASSERT(!P(tree_son) (xchg, 0));
|
|
son = P(tree_son) (xchg, 1);
|
|
stack[depth].buck = xchg; /* Magic iff d == 1. */
|
|
stack[depth+d].buck = node;
|
|
xchg->son[0] = P(tree_son) (node, 0);
|
|
xchg->son[1] = P(tree_son) (node, 1);
|
|
if (depth > 0)
|
|
P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, xchg);
|
|
else
|
|
t->root = xchg;
|
|
node->son[0] = NULL;
|
|
node->son[1] = son;
|
|
P(set_tree_son) (stack[depth+d-1].buck, stack[depth+d-1].son, node);
|
|
#ifdef TREE_STORE_PARENT
|
|
xchg->parent = depth > 0 ? stack[depth-1].buck : NULL;
|
|
xchg->son[0]->parent = xchg;
|
|
xchg->son[1]->parent = xchg;
|
|
node->parent = stack[depth+d-1].buck;
|
|
if (son)
|
|
son->parent = node;
|
|
#endif
|
|
P(set_red_flag) (xchg, flag_node);
|
|
P(set_red_flag) (node, flag_xchg);
|
|
depth += d;
|
|
}
|
|
else if (P(tree_son) (node, 0))
|
|
son = P(tree_son) (node, 0);
|
|
else
|
|
son = P(tree_son) (node, 1);
|
|
/* At this moment, stack[depth].buck == node and it has at most one son
|
|
* and it is stored in the variable son. */
|
|
t->count--;
|
|
if (depth > 0)
|
|
{
|
|
P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, son);
|
|
#ifdef TREE_STORE_PARENT
|
|
if (son)
|
|
son->parent = stack[depth-1].buck;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
t->root = son;
|
|
#ifdef TREE_STORE_PARENT
|
|
if (son)
|
|
son->parent = NULL;
|
|
#endif
|
|
}
|
|
if (P(red_flag) (node))
|
|
{
|
|
ASSERT(!son);
|
|
return;
|
|
}
|
|
P(free)(t, node);
|
|
/* We have deleted a black node. */
|
|
if (son)
|
|
{
|
|
ASSERT(P(red_flag) (son));
|
|
P(set_red_flag) (son, 0);
|
|
return;
|
|
}
|
|
P(rotate_after_delete) (t, stack, (int) depth - 1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_REMOVE
|
|
TREE_STATIC void P(remove) (T *t, P(node) *Node)
|
|
{
|
|
P(stack_entry) stack[TREE_MAX_DEPTH];
|
|
P(bucket) *node = SKIP_BACK(P(bucket), n, Node);
|
|
uint depth = 0, i;
|
|
stack[0].buck = node;
|
|
stack[0].son = 10;
|
|
while (node->parent)
|
|
{
|
|
depth++;
|
|
ASSERT(depth < TREE_MAX_DEPTH);
|
|
stack[depth].buck = node->parent;
|
|
stack[depth].son = P(tree_son) (node->parent, 0) == node ? 0 : 1;
|
|
node = node->parent;
|
|
}
|
|
for (i=0; i<(depth+1)/2; i++)
|
|
{
|
|
P(stack_entry) tmp = stack[i];
|
|
stack[i] = stack[depth-i];
|
|
stack[depth-i] = tmp;
|
|
}
|
|
P(remove_by_stack) (t, stack, depth);
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_DELETE
|
|
TREE_STATIC int P(delete) (T *t, TREE_KEY_DECL)
|
|
{
|
|
P(stack_entry) stack[TREE_MAX_DEPTH];
|
|
uint depth;
|
|
depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
|
|
if (stack[depth].buck)
|
|
{
|
|
P(remove_by_stack) (t, stack, depth);
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef TREE_WANT_DUMP
|
|
static void P(dump_subtree) (struct fastbuf *fb, T *t, P(bucket) *node, P(bucket) *parent, int cmp_res, int level, uint black)
|
|
{
|
|
uint flag;
|
|
int i;
|
|
if (!node)
|
|
{
|
|
ASSERT(black == t->height);
|
|
return;
|
|
}
|
|
flag = P(red_flag) (node);
|
|
#ifdef TREE_STORE_PARENT
|
|
ASSERT(node->parent == parent);
|
|
#endif
|
|
if (parent)
|
|
{
|
|
ASSERT(!flag || !P(red_flag) (parent));
|
|
cmp_res *= P(cmp) (TREE_KEY(node->n.), TREE_KEY(parent->n.));
|
|
#ifdef TREE_DUPLICATES
|
|
ASSERT(cmp_res >= 0);
|
|
#else
|
|
ASSERT(cmp_res > 0);
|
|
#endif
|
|
}
|
|
P(dump_subtree) (fb, t, P(tree_son) (node, 0), node, -1, level+1, black + (1-flag));
|
|
if (fb)
|
|
{
|
|
char tmp[20];
|
|
for (i=0; i<level; i++)
|
|
bputs(fb, " ");
|
|
sprintf(tmp, "L%d %c\t", level, flag ? 'R' : 'B');
|
|
bputs(fb, tmp);
|
|
P(dump_key) (fb, &node->n);
|
|
P(dump_data) (fb, &node->n);
|
|
bputs(fb, "\n");
|
|
}
|
|
P(dump_subtree) (fb, t, P(tree_son) (node, 1), node, +1, level+1, black + (1-flag));
|
|
}
|
|
|
|
TREE_STATIC void P(dump) (struct fastbuf *fb, T *t)
|
|
{
|
|
if (fb)
|
|
{
|
|
char tmp[50];
|
|
sprintf(tmp, "Tree of %d nodes and height %d\n", t->count, t->height);
|
|
bputs(fb, tmp);
|
|
}
|
|
P(dump_subtree) (fb, t, t->root, NULL, 0, 0, 0);
|
|
if (fb)
|
|
{
|
|
bputs(fb, "\n");
|
|
bflush(fb);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* And the iterator */
|
|
|
|
#ifdef TREE_WANT_ITERATOR
|
|
static P(node) * P(first_node) (T *t, uint direction)
|
|
{
|
|
P(bucket) *node = t->root, *prev = NULL;
|
|
while (node)
|
|
{
|
|
prev = node;
|
|
node = P(tree_son) (node, direction);
|
|
}
|
|
return prev ? &prev->n : NULL;
|
|
}
|
|
|
|
#ifndef TREE_FOR_ALL
|
|
|
|
#define TREE_FOR_ALL(t_px, t_ptr, t_var) \
|
|
do \
|
|
{ \
|
|
GLUE_(t_px,node) *t_var = GLUE_(t_px,first_node)(t_ptr, 0); \
|
|
for (; t_var; t_var = GLUE_(t_px,adjacent)(t_var, 1)) \
|
|
{
|
|
#define TREE_END_FOR } } while(0)
|
|
#define TREE_BREAK break
|
|
#define TREE_CONTINUE continue
|
|
|
|
#endif
|
|
#endif
|
|
|
|
/* Finally, undefine all the parameters */
|
|
|
|
#undef P
|
|
#undef T
|
|
|
|
#undef TREE_NODE
|
|
#undef TREE_PREFIX
|
|
#undef TREE_KEY_ATOMIC
|
|
#undef TREE_KEY_STRING
|
|
#undef TREE_KEY_ENDSTRING
|
|
#undef TREE_KEY_COMPLEX
|
|
#undef TREE_KEY_DECL
|
|
#undef TREE_WANT_CLEANUP
|
|
#undef TREE_WANT_FIND
|
|
#undef TREE_WANT_FIND_NEXT
|
|
#undef TREE_WANT_SEARCH
|
|
#undef TREE_WANT_SEARCH_DOWN
|
|
#undef TREE_WANT_SEARCH_UP
|
|
#undef TREE_WANT_BOUNDARY
|
|
#undef TREE_WANT_ADJACENT
|
|
#undef TREE_WANT_NEW
|
|
#undef TREE_WANT_LOOKUP
|
|
#undef TREE_WANT_DELETE
|
|
#undef TREE_WANT_REMOVE
|
|
#undef TREE_WANT_DUMP
|
|
#undef TREE_WANT_ITERATOR
|
|
#undef TREE_GIVE_CMP
|
|
#undef TREE_GIVE_EXTRA_SIZE
|
|
#undef TREE_GIVE_INIT_KEY
|
|
#undef TREE_GIVE_INIT_DATA
|
|
#undef TREE_GIVE_ALLOC
|
|
#undef TREE_NOCASE
|
|
#undef TREE_ATOMIC_TYPE
|
|
#undef TREE_USE_POOL
|
|
#undef TREE_STATIC
|
|
#undef TREE_CONSERVE_SPACE
|
|
#undef TREE_DUPLICATES
|
|
#undef TREE_MAX_DEPTH
|
|
#undef TREE_STORE_PARENT
|
|
#undef TREE_KEY
|
|
#undef TREE_EXTRA_SIZE
|
|
#undef TREE_TRACE
|
|
#undef TREE_AUTO_POOL
|
|
#undef TREE_AUTO_MEMPOOL
|
|
#undef TREE_AUTO_ELTPOOL
|
|
|