Browse Source

Split into multiple modules

master
Jirka Sejkora 4 years ago
parent
commit
28567a0b3f
  1. 4
      Cargo.toml
  2. 250
      src/city.rs
  3. 55
      src/find_useless.rs
  4. 582
      src/main.rs
  5. 264
      src/optimization.rs
  6. 21
      src/population.rs

4
Cargo.toml

@ -14,7 +14,3 @@ indicatif = "0.15.0"
[[bin]] [[bin]]
name = "prague" name = "prague"
path = "src/main.rs" path = "src/main.rs"
[[bin]]
name = "find-useless"
path = "src/find_useless.rs"

250
src/city.rs

@ -0,0 +1,250 @@
use std::fmt;
use std::fmt::Formatter;
pub const SIZE: usize = 16384;
pub const HOUSE_RANGE: usize = 500;
pub struct City {
prices: Vec<u16>,
buyable_house_count: usize
}
impl City {
pub fn read_from_file(filename: &str) -> Self {
let values = std::fs::read(filename).unwrap();
let mut prices: Vec<u16> = Vec::new();
for y in 0..SIZE {
for x in 0..SIZE {
let price = (values[(y * SIZE + x) * 2] as u16) | ((values[(y * SIZE + x) * 2 + 1] as u16) << 8);
prices.push(price);
}
}
City::new(prices)
}
pub fn new(prices: Vec<u16>) -> Self {
let mut buyable_house_count = 0;
for &price in &prices {
if price > 0 {
buyable_house_count += 1;
}
}
City { prices, buyable_house_count }
}
pub fn get_price(&self, house: &House) -> u16 {
self.prices[house.y * SIZE + house.x]
}
pub fn get_price_xy(&self, x: usize, y: usize) -> u16 {
self.prices[y * SIZE + x]
}
pub fn is_house(&self, house: &House) -> bool {
self.get_price(&house) > 0
}
pub fn is_house_xy(&self, x: usize, y: usize) -> bool {
self.get_price_xy(x, y) > 0
}
pub fn get_house_count(&self) -> usize {
self.buyable_house_count
}
}
#[derive(Eq, PartialEq, Hash, Copy, Clone)]
pub struct House {
pub x: usize,
pub y: usize,
}
impl House {
pub fn new(x: usize, y: usize) -> Self {
House { x, y }
}
pub fn range_rectangle(&self) -> Rectangle {
let top = if self.y <= HOUSE_RANGE { 0 } else { self.y - HOUSE_RANGE };
let bottom = if self.y >= SIZE - 1 - HOUSE_RANGE { SIZE - 1 } else { self.y + HOUSE_RANGE };
let left = if self.x <= HOUSE_RANGE { 0 } else { self.x - HOUSE_RANGE };
let right = if self.x >= SIZE - 1 - HOUSE_RANGE { SIZE - 1 } else { self.x + HOUSE_RANGE };
Rectangle {top, bottom, left, right}
}
}
/// Rectangle - a 2D range with inclusive bounds
pub struct Rectangle {
/// The smaller x coordinate.
pub left: usize,
/// The bigger x coordinate.
pub right: usize,
/// The smaller y coordinate.
pub top: usize,
/// The bigger y coordinate.
pub bottom: usize,
}
impl fmt::Display for Rectangle {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "L{}-{}R T{}-{}B", self.left, self.right, self.top, self.bottom)
}
}
impl Rectangle {
pub fn is_inside(&self, x: usize, y: usize) -> bool {
self.left <= x && x <= self.right && self.top <= y && y <= self.bottom
}
pub fn width(&self) -> usize {
self.right - self.left
}
pub fn height(&self) -> usize {
self.bottom - self.top
}
}
pub struct HouseLayout<'a> {
pub city: &'a City,
reachable: Vec<u16>,
houses: Vec<House>,
reachable_houses: usize
}
impl<'a> HouseLayout<'a> {
pub fn new(city: &'a City) -> Self {
HouseLayout { city, reachable: vec![0; SIZE * SIZE], houses: Vec::new(), reachable_houses: 0 }
}
pub fn cover_count(&self, house: House) -> u16 {
self.reachable[house.y * SIZE + house.x]
}
pub fn cover_count_xy(&self, x: usize, y: usize) -> u16 {
self.reachable[y * SIZE + x]
}
pub fn is_covered(&self, house: House) -> bool {
self.cover_count(house) > 0
}
pub fn add_house(&mut self, house: House) -> usize {
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
let index = y as usize * SIZE + x as usize;
if self.reachable[index] == 0 && self.city.is_house_xy(x as usize, y as usize) {
self.reachable_houses += 1;
}
self.reachable[index] += 1;
}
}
self.houses.push(house);
self.houses.len() - 1
}
pub fn remove_house(&mut self, index: usize) {
let house = self.houses.swap_remove(index);
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
let index = y as usize * SIZE + x as usize;
self.reachable[index] -= 1;
if self.reachable[index] == 0 && self.city.is_house_xy(x as usize, y as usize) {
self.reachable_houses -= 1;
}
}
}
}
pub fn is_valid(&self) -> bool {
self.reachable_houses == self.city.buyable_house_count
}
pub fn price(&self) -> u32 {
get_price(self.city, &self.houses)
}
pub fn houses(&self) -> &Vec<House> {
&self.houses
}
}
fn get_price(city: &City, houses: &Vec<House>) -> u32 {
let mut price = 0u32;
for house in houses {
price += city.get_price(&house) as u32;
}
price
}
fn is_valid(city: &City, houses: &Vec<House>) -> Option<u32> {
let mut reachable = vec![false; SIZE * SIZE];
let mut price = 0u32;
for house in houses {
assert!(city.prices[house.y * SIZE + house.x] > 0);
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
reachable[y as usize * SIZE + x as usize] = true;
}
}
price += city.get_price(&house) as u32;
}
for y in 0..SIZE {
for x in 0..SIZE {
if !reachable[y * SIZE + x] && city.prices[y * SIZE + x] > 0 {
return None;
}
}
}
Some(price)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn house_rectangle_at_min() {
let house = House::new(0, 0);
let rect = house.range_rectangle();
assert_eq!(rect.top, 0);
assert_eq!(rect.left, 0);
assert_eq!(rect.right, HOUSE_RANGE);
assert_eq!(rect.bottom, HOUSE_RANGE);
}
#[test]
fn house_rectangle_at_max() {
let house = House::new(SIZE - 1, SIZE - 1);
let rect = house.range_rectangle();
assert_eq!(rect.top, SIZE - 1 - HOUSE_RANGE);
assert_eq!(rect.left, SIZE - 1 - HOUSE_RANGE);
assert_eq!(rect.right, SIZE - 1);
assert_eq!(rect.bottom, SIZE - 1);
}
#[test]
fn house_rect_in_middle() {
let house = House::new(SIZE / 2, SIZE / 2);
let rect = house.range_rectangle();
assert_eq!(rect.top, house.y - HOUSE_RANGE);
assert_eq!(rect.left, house.x - HOUSE_RANGE);
assert_eq!(rect.right, house.x + HOUSE_RANGE);
assert_eq!(rect.bottom, house.y + HOUSE_RANGE);
}
}

55
src/find_useless.rs

@ -1,55 +0,0 @@
use indicatif::{ProgressBar, ProgressStyle};
use std::collections::HashSet;
use main::{get_neighbors, House, City};
mod main;
fn main() {
// This is quite frankly useless
let city = City::read_from_file("01.in");
let bar = ProgressBar::new(city.get_house_count() as u64);
bar.set_style(ProgressStyle::default_bar()
.template("{spinner:.green} [{elapsed_precise}] [{bar:40.cyan/blue}] {pos}/{len} ({msg}) ({eta})")
.progress_chars("#>-"));
let mut useless_count = 0;
let mut checked_count = 0;
for y in 0..main::SIZE {
for x in 0..main::SIZE {
if city.is_house_xy(x, y) {
let house = House::new(x, y);
let house_neighbors = get_neighbors(&city, &house);
let mut useless = true;
for neighbor in &house_neighbors {
if city.get_price(&house) < city.get_price(&neighbor) {
useless = false;
break;
}
let neighbor_neighbors: HashSet<_> = get_neighbors(&city, &neighbor).into_iter().collect();
// Check if house_neighbors is a subset of neighbor_neighbors
let all_in = &house_neighbors.iter().all(|item| neighbor_neighbors.contains(item));
if !all_in {
useless = false;
break;
}
}
if useless {
println!("{} {}", y, x);
useless_count += 1;
} else {
//println!("Y{} X{} may be sometimes worth buying", y, x);
}
checked_count += 1;
bar.set_message(&*format!("{}, {:.2}%", useless_count, 100.0 * useless_count as f64/checked_count as f64));
bar.inc(1);
}
}
}
bar.finish();
}

582
src/main.rs

@ -3,201 +3,11 @@ use rand::{SeedableRng, Rng, thread_rng};
use std::fmt; use std::fmt;
use std::fmt::Formatter; use std::fmt::Formatter;
use std::collections::{HashMap, HashSet}; use std::collections::{HashMap, HashSet};
use city::{HouseLayout, City, House};
pub const SIZE: usize = 16384; mod optimization;
pub const HOUSE_RANGE: usize = 500; mod population;
mod city;
pub struct City {
prices: Vec<u16>,
buyable_house_count: usize
}
impl City {
pub fn read_from_file(filename: &str) -> Self {
let values = std::fs::read(filename).unwrap();
let mut prices: Vec<u16> = Vec::new();
for y in 0..SIZE {
for x in 0..SIZE {
let price = (values[(y * SIZE + x) * 2] as u16) | ((values[(y * SIZE + x) * 2 + 1] as u16) << 8);
prices.push(price);
}
}
City::new(prices)
}
pub fn new(prices: Vec<u16>) -> Self {
let mut buyable_house_count = 0;
for &price in &prices {
if price > 0 {
buyable_house_count += 1;
}
}
City { prices, buyable_house_count }
}
pub fn get_price(&self, house: &House) -> u16 {
self.prices[house.y * SIZE + house.x]
}
pub fn get_price_xy(&self, x: usize, y: usize) -> u16 {
self.prices[y * SIZE + x]
}
pub fn is_house(&self, house: &House) -> bool {
self.get_price(&house) > 0
}
pub fn is_house_xy(&self, x: usize, y: usize) -> bool {
self.get_price_xy(x, y) > 0
}
pub fn get_house_count(&self) -> usize {
self.buyable_house_count
}
}
#[derive(Eq, PartialEq, Hash, Copy, Clone)]
pub struct House {
x: usize,
y: usize,
}
impl House {
pub fn new(x: usize, y: usize) -> Self {
House { x, y }
}
pub fn range_rectangle(&self) -> Rectangle {
let top = if self.y <= HOUSE_RANGE { 0 } else { self.y - HOUSE_RANGE };
let bottom = if self.y >= SIZE - 1 - HOUSE_RANGE { SIZE - 1 } else { self.y + HOUSE_RANGE };
let left = if self.x <= HOUSE_RANGE { 0 } else { self.x - HOUSE_RANGE };
let right = if self.x >= SIZE - 1 - HOUSE_RANGE { SIZE - 1 } else { self.x + HOUSE_RANGE };
Rectangle {top, bottom, left, right}
}
}
/// Rectangle - a 2D range with inclusive bounds
pub struct Rectangle {
/// The smaller x coordinate.
left: usize,
/// The bigger x coordinate.
right: usize,
/// The smaller y coordinate.
top: usize,
/// The bigger y coordinate.
bottom: usize,
}
impl fmt::Display for Rectangle {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "L{}-{}R T{}-{}B", self.left, self.right, self.top, self.bottom)
}
}
impl Rectangle {
pub fn is_inside(&self, x: usize, y: usize) -> bool {
self.left <= x && x <= self.right && self.top <= y && y <= self.bottom
}
pub fn width(&self) -> usize {
self.right - self.left
}
pub fn height(&self) -> usize {
self.bottom - self.top
}
}
pub struct HouseLayout<'a> {
city: &'a City,
reachable: Vec<u16>,
houses: Vec<House>,
reachable_houses: usize
}
impl<'a> HouseLayout<'a> {
pub fn new(city: &'a City) -> Self {
HouseLayout { city, reachable: vec![0; SIZE * SIZE], houses: Vec::new(), reachable_houses: 0 }
}
pub fn cover_count(&self, house: House) -> u16 {
self.reachable[house.y * SIZE + house.x]
}
pub fn cover_count_xy(&self, x: usize, y: usize) -> u16 {
self.reachable[y * SIZE + x]
}
pub fn is_covered(&self, house: House) -> bool {
self.cover_count(house) > 0
}
pub fn add_house(&mut self, house: House) -> usize {
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
let index = y as usize * SIZE + x as usize;
if self.reachable[index] == 0 && self.city.is_house_xy(x as usize, y as usize) {
self.reachable_houses += 1;
}
self.reachable[index] += 1;
}
}
self.houses.push(house);
self.houses.len() - 1
}
pub fn remove_house(&mut self, index: usize) {
let house = self.houses.swap_remove(index);
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
let index = y as usize * SIZE + x as usize;
self.reachable[index] -= 1;
if self.reachable[index] == 0 && self.city.is_house_xy(x as usize, y as usize) {
self.reachable_houses -= 1;
}
}
}
}
pub fn is_valid(&self) -> bool {
self.reachable_houses == self.city.buyable_house_count
}
pub fn price(&self) -> u32 {
get_price(self.city, &self.houses)
}
pub fn houses(&self) -> &Vec<House> {
&self.houses
}
}
fn dump_layout(layout: &HouseLayout, best_price: &mut Option<u32>, seed: u64) {
let price = layout.price();
if best_price.is_none() || price < best_price.unwrap() {
*best_price = Some(price);
eprintln!("Printing {} - new best", price);
println!("New best!");
println!("Price {}, seed {}", price, seed);
print_houses(&layout.houses());
println!();
} else {
eprintln!("Printing {}", price);
println!("Price {}, seed {}", price, seed);
print_houses(&layout.houses());
println!();
}
}
fn main() { fn main() {
let city = City::read_from_file("01.in"); let city = City::read_from_file("01.in");
@ -209,18 +19,18 @@ fn main() {
let mut rng = StdRng::seed_from_u64(seed); let mut rng = StdRng::seed_from_u64(seed);
let mut layout = HouseLayout::new(&city); let mut layout = HouseLayout::new(&city);
eprintln!("Starting random population..."); eprintln!("Starting random population...");
populate_random(&mut layout, &mut rng); population::populate_random(&mut layout, &mut rng);
eprintln!("Finished random init, price: {}", layout.price()); eprintln!("Finished random init, price: {}", layout.price());
loop { loop {
let mut improved = false; let mut improved = false;
eprintln!("Starting moving individual houses..."); eprintln!("Starting moving individual houses...");
if improve_move_individual_houses(&mut layout, &mut rng) { if optimization::improve_move_individual_houses(&mut layout, &mut rng) {
dump_layout(&layout, &mut best_price, seed); dump_layout(&layout, &mut best_price, seed);
improved = true; improved = true;
} }
eprintln!("Finished moving individual houses..."); eprintln!("Finished moving individual houses...");
eprintln!("Starting pairwise house merge..."); eprintln!("Starting pairwise house merge...");
if improve_merge_pairwise(&mut layout) { if optimization::improve_merge_pairwise(&mut layout) {
dump_layout(&layout, &mut best_price, seed); dump_layout(&layout, &mut best_price, seed);
improved = true; improved = true;
} }
@ -232,303 +42,6 @@ fn main() {
} }
} }
fn populate_random(layout: &mut HouseLayout, rng: &mut StdRng) {
loop {
loop {
let x = rng.gen_range(0..SIZE);
let y = rng.gen_range(0..SIZE);
let house = House::new(x, y);
if layout.city.is_house_xy(x, y) && !layout.is_covered(house) {
layout.add_house(house);
break;
}
}
if layout.is_valid() {
break;
}
}
}
fn improve_move_individual_houses(layout: &mut HouseLayout, mut rng: &mut StdRng) -> bool {
let mut improved = false;
let mut untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
while untried_houses.len() > 0 {
let house = untried_houses.pop().unwrap();
let house_index = layout.houses().iter().position(|x| *x == house).unwrap();
let move_rectangle = match get_valid_move_rectangle(&layout, house) {
Ok(move_rectangle) => move_rectangle,
Err(RectangleSearchError::Useless) => {
//let old_price = layout.price();
layout.remove_house(house_index);
//let new_price = layout.price();
//let price_diff = new_price as i64 - old_price as i64;
//eprintln!(" candidate is valid, price diff: {}.", price_diff);
//eprintln!("Removed a house (useless), diff {}", price_diff);
//eprintln!("Improved price: {}", new_price);
improved = true;
untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
continue;
}
_ => unreachable!()
};
// TODO: Not needed, can just store best
let mut new_candidates = Vec::new();
for new_y in move_rectangle.top..=move_rectangle.bottom {
for new_x in move_rectangle.left..=move_rectangle.right {
if layout.city.is_house_xy(new_x, new_y) && layout.city.get_price_xy(new_x, new_y) < layout.city.get_price(&house) {
new_candidates.push(House::new(new_x, new_y));
}
}
}
new_candidates.sort_by(|a, b| layout.city.get_price(&a).cmp(&layout.city.get_price(&b)));
if new_candidates.len() == 0 {
//eprintln!("Did not find candidate");
} else {
for (i, &candidate) in new_candidates.iter().enumerate() {
//eprint!("Found candidate {}...", i);
//let old_price = layout.price();
layout.remove_house(house_index);
layout.add_house(candidate);
assert!(layout.is_valid());
//let new_price = layout.price();
//let price_diff = new_price as i64 - old_price as i64;
//eprintln!(" candidate is valid, price diff: {}.", price_diff);
//eprintln!("Improved price: {}", new_price);
improved = true;
untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
break;
}
}
}
improved
}
pub fn improve_merge_pairwise(layout: &mut HouseLayout) -> bool {
let mut improved = false;
loop {
// This here is a hack for being unable to modify the houses while looping through them.
// We instead go through the houses repeatedly and remember which pairs we have already
// tried by hashing their values because they can and do move throughout the layout Vec
// as it's being modified.
let mut checked = HashSet::new();
let mut loop_improved = false;
loop {
let mut merge = None;
'outer_houses: for i in 0..layout.houses().len() {
for j in i + 1..layout.houses().len() {
let house1 = layout.houses()[i];
let house2 = layout.houses()[j];
let x_dist = (house1.x as i32 - house2.x as i32).abs() as usize;
let y_dist = (house1.y as i32 - house2.y as i32).abs() as usize;
if x_dist > 4 * HOUSE_RANGE || y_dist > 4 * HOUSE_RANGE {
// Never close enough to merge
continue;
}
if checked.contains(&(house1, house2)) || checked.contains(&(house2, house1)) {
continue;
} else {
checked.insert((house1, house2));
}
match get_valid_move_rectangle_multiple(&layout, &vec! {house1, house2}) {
Ok(rect) => {
let mut cheapest = None;
for y in rect.top..=rect.bottom {
for x in rect.left..=rect.right {
if !layout.city.is_house_xy(x, y) { continue; }
let price = layout.city.get_price_xy(x, y);
match cheapest {
None => cheapest = Some((x, y, price)),
Some((_, _, cheapest_price)) if price < cheapest_price => cheapest = Some((x, y, price)),
_ => {}
};
}
}
if let Some((x, y, price)) = cheapest {
if price >= layout.city.get_price(&house1) + layout.city.get_price(&house2) {
// Merging not worth
//eprintln!("Merging not worth!");
} else {
merge = Some((i, j, House::new(x, y)));
break 'outer_houses;
}
}
}
Err(RectangleSearchError::Useless) => eprintln!("Found useless pair of houses, not solving!"),
Err(RectangleSearchError::Unsatisfiable) => {}
}
}
}
if let Some((i, j, house)) = merge {
let old_price = layout.price();
assert!(i < j);
layout.remove_house(j);
layout.remove_house(i);
layout.add_house(house);
assert!(layout.is_valid());
let new_price = layout.price();
let price_diff = new_price as i32 - old_price as i32;
eprintln!("Merged two houses, new price {}, diff {}", new_price, price_diff);
improved = true;
loop_improved = true;
} else {
break;
}
}
if !loop_improved {
break;
}
}
improved
}
pub enum RectangleSearchError {
Useless,
Unsatisfiable
}
pub fn get_valid_move_rectangle_multiple(layout: &HouseLayout, houses: &Vec<House>) -> Result<Rectangle, RectangleSearchError> {
// This is a generalization of get_valid_move_rectangle, it's basically the same thing,
// just with a dynamic rectangles_containing_count
// We first establish a bounding box for an that has to be covered if all houses are removed.
let mut covered_rect: Option<Rectangle> = None;
for house in houses {
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
// We count how many rectangles of houses contain this xy position.
let mut rectangles_containing_count = 0;
for house in houses {
let rect = house.range_rectangle();
if rect.is_inside(x, y) {
rectangles_containing_count += 1;
}
}
// If this house is covered by the exact amount of rectangles,
// then removing all input houses would uncover this position.
// It cannot be less than the rectangle count, and more means there
// is another house covering it as well.
if layout.cover_count_xy(x, y) == rectangles_containing_count && layout.city.is_house_xy(x, y) {
if let Some(cover) = &mut covered_rect {
cover.left = cover.left.min(x);
cover.right = cover.right.max(x);
cover.top = cover.top.min(y);
cover.bottom = cover.bottom.max(y);
} else {
covered_rect = Some(Rectangle { left: x, right: x, top: y, bottom: y });
}
}
}
}
};
if covered_rect.is_none() {
// Unnecessary set of houses.
return Err(RectangleSearchError::Useless);
}
let covered_rect = covered_rect.unwrap();
let height_margin = HOUSE_RANGE as i32 - covered_rect.height() as i32;
let width_margin = HOUSE_RANGE as i32 - covered_rect.width() as i32;
let top = (covered_rect.top as i32 - height_margin).max(0) as usize;
let left = (covered_rect.left as i32 - width_margin).max(0) as usize;
let bottom = (covered_rect.bottom + height_margin as usize).min(SIZE - 1);
let right = (covered_rect.right + width_margin as usize).min(SIZE - 1);
if top > bottom || left > right {
// Unsatisfiable rectangle by one house
return Err(RectangleSearchError::Unsatisfiable);
}
Ok(Rectangle { left, right, top, bottom })
}
pub fn get_valid_move_rectangle(layout: &HouseLayout, house: House) -> Result<Rectangle, RectangleSearchError> {
// We first establish a bounding box for an that has to be covered if the house is removed.
let mut covered_rect: Option<Rectangle> = None;
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
if layout.cover_count_xy(x, y) == 1 && layout.city.is_house_xy(x, y) {
// This house is only covered by the house, it has to be covered from the new position as well.
if let Some(cover) = &mut covered_rect {
cover.left = cover.left.min(x);
cover.right = cover.right.max(x);
cover.top = cover.top.min(y);
cover.bottom = cover.bottom.max(y);
} else {
covered_rect = Some(Rectangle { left: x, right: x, top: y, bottom: y });
}
}
}
}
if covered_rect.is_none() {
return Err(RectangleSearchError::Useless)
}
let covered_rect = covered_rect.unwrap();
// The distance of the rectangle from the original box tells us how much the house can move.
let dist_left = covered_rect.left - range_rect.left;
let dist_right = range_rect.right - covered_rect.right;
let dist_top = covered_rect.top - range_rect.top;
let dist_bottom = range_rect.bottom - covered_rect.bottom;
let left = if house.x <= dist_right { 0 } else { house.x - dist_right };
let right = if house.x >= SIZE - 1 - dist_left { SIZE - 1 } else { house.x + dist_left };
let top = if house.y <= dist_bottom { 0 } else { house.y - dist_bottom };
let bottom = if house.y >= SIZE - 1 - dist_top { SIZE - 1 } else { house.y + dist_top };
let valid_move_rectangle = Rectangle {
left, right, top, bottom
};
Ok(valid_move_rectangle)
}
pub fn get_neighbors(city: &City, house: &House) -> Vec<House> {
let mut neighbors = Vec::new();
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
let house = House::new(x as usize, y as usize);
if city.get_price(&house) > 0 {
neighbors.push(house);
}
}
}
neighbors
}
fn print_houses(houses: &Vec<House>) { fn print_houses(houses: &Vec<House>) {
println!("{}", houses.len()); println!("{}", houses.len());
for house in houses { for house in houses {
@ -536,73 +49,20 @@ fn print_houses(houses: &Vec<House>) {
} }
} }
fn get_price(city: &City, houses: &Vec<House>) -> u32 { fn dump_layout(layout: &HouseLayout, best_price: &mut Option<u32>, seed: u64) {
let mut price = 0u32; let price = layout.price();
for house in houses { if best_price.is_none() || price < best_price.unwrap() {
price += city.get_price(&house) as u32; *best_price = Some(price);
} eprintln!("Printing {} - new best", price);
println!("New best!");
price println!("Price {}, seed {}", price, seed);
} print_houses(&layout.houses());
println!();
fn is_valid(city: &City, houses: &Vec<House>) -> Option<u32> { } else {
let mut reachable = vec![false; SIZE * SIZE]; eprintln!("Printing {}", price);
let mut price = 0u32; println!("Price {}, seed {}", price, seed);
print_houses(&layout.houses());
for house in houses { println!();
assert!(city.prices[house.y * SIZE + house.x] > 0);
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
reachable[y as usize * SIZE + x as usize] = true;
}
}
price += city.get_price(&house) as u32;
}
for y in 0..SIZE {
for x in 0..SIZE {
if !reachable[y * SIZE + x] && city.prices[y * SIZE + x] > 0 {
return None;
}
}
}
Some(price)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn house_rectangle_at_min() {
let house = House::new(0, 0);
let rect = house.range_rectangle();
assert_eq!(rect.top, 0);
assert_eq!(rect.left, 0);
assert_eq!(rect.right, HOUSE_RANGE);
assert_eq!(rect.bottom, HOUSE_RANGE);
} }
#[test]
fn house_rectangle_at_max() {
let house = House::new(SIZE - 1, SIZE - 1);
let rect = house.range_rectangle();
assert_eq!(rect.top, SIZE - 1 - HOUSE_RANGE);
assert_eq!(rect.left, SIZE - 1 - HOUSE_RANGE);
assert_eq!(rect.right, SIZE - 1);
assert_eq!(rect.bottom, SIZE - 1);
} }
#[test]
fn house_rect_in_middle() {
let house = House::new(SIZE / 2, SIZE / 2);
let rect = house.range_rectangle();
assert_eq!(rect.top, house.y - HOUSE_RANGE);
assert_eq!(rect.left, house.x - HOUSE_RANGE);
assert_eq!(rect.right, house.x + HOUSE_RANGE);
assert_eq!(rect.bottom, house.y + HOUSE_RANGE);
}
}

264
src/optimization.rs

@ -0,0 +1,264 @@
use std::collections::HashSet;
use rand::prelude::{SliceRandom, StdRng};
use crate::city::{Rectangle, HOUSE_RANGE, SIZE, House, HouseLayout};
pub enum RectangleSearchError {
Useless,
Unsatisfiable
}
pub fn get_valid_move_rectangle_multiple(layout: &HouseLayout, houses: &Vec<House>) -> Result<Rectangle, RectangleSearchError> {
// This is a generalization of get_valid_move_rectangle, it's basically the same thing,
// just with a dynamic rectangles_containing_count
// We first establish a bounding box for an that has to be covered if all houses are removed.
let mut covered_rect: Option<Rectangle> = None;
for house in houses {
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
// We count how many rectangles of houses contain this xy position.
let mut rectangles_containing_count = 0;
for house in houses {
let rect = house.range_rectangle();
if rect.is_inside(x, y) {
rectangles_containing_count += 1;
}
}
// If this house is covered by the exact amount of rectangles,
// then removing all input houses would uncover this position.
// It cannot be less than the rectangle count, and more means there
// is another house covering it as well.
if layout.cover_count_xy(x, y) == rectangles_containing_count && layout.city.is_house_xy(x, y) {
if let Some(cover) = &mut covered_rect {
cover.left = cover.left.min(x);
cover.right = cover.right.max(x);
cover.top = cover.top.min(y);
cover.bottom = cover.bottom.max(y);
} else {
covered_rect = Some(Rectangle { left: x, right: x, top: y, bottom: y });
}
}
}
}
};
if covered_rect.is_none() {
// Unnecessary set of houses.
return Err(RectangleSearchError::Useless);
}
let covered_rect = covered_rect.unwrap();
let height_margin = HOUSE_RANGE as i32 - covered_rect.height() as i32;
let width_margin = HOUSE_RANGE as i32 - covered_rect.width() as i32;
let top = (covered_rect.top as i32 - height_margin).max(0) as usize;
let left = (covered_rect.left as i32 - width_margin).max(0) as usize;
let bottom = (covered_rect.bottom + height_margin as usize).min(SIZE - 1);
let right = (covered_rect.right + width_margin as usize).min(SIZE - 1);
if top > bottom || left > right {
// Unsatisfiable rectangle by one house
return Err(RectangleSearchError::Unsatisfiable);
}
Ok(Rectangle { left, right, top, bottom })
}
pub fn get_valid_move_rectangle(layout: &HouseLayout, house: House) -> Result<Rectangle, RectangleSearchError> {
// We first establish a bounding box for an that has to be covered if the house is removed.
let mut covered_rect: Option<Rectangle> = None;
let range_rect = house.range_rectangle();
for y in range_rect.top..=range_rect.bottom {
for x in range_rect.left..=range_rect.right {
if layout.cover_count_xy(x, y) == 1 && layout.city.is_house_xy(x, y) {
// This house is only covered by the house, it has to be covered from the new position as well.
if let Some(cover) = &mut covered_rect {
cover.left = cover.left.min(x);
cover.right = cover.right.max(x);
cover.top = cover.top.min(y);
cover.bottom = cover.bottom.max(y);
} else {
covered_rect = Some(Rectangle { left: x, right: x, top: y, bottom: y });
}
}
}
}
if covered_rect.is_none() {
return Err(RectangleSearchError::Useless)
}
let covered_rect = covered_rect.unwrap();
// The distance of the rectangle from the original box tells us how much the house can move.
let dist_left = covered_rect.left - range_rect.left;
let dist_right = range_rect.right - covered_rect.right;
let dist_top = covered_rect.top - range_rect.top;
let dist_bottom = range_rect.bottom - covered_rect.bottom;
let left = if house.x <= dist_right { 0 } else { house.x - dist_right };
let right = if house.x >= SIZE - 1 - dist_left { SIZE - 1 } else { house.x + dist_left };
let top = if house.y <= dist_bottom { 0 } else { house.y - dist_bottom };
let bottom = if house.y >= SIZE - 1 - dist_top { SIZE - 1 } else { house.y + dist_top };
let valid_move_rectangle = Rectangle {
left, right, top, bottom
};
Ok(valid_move_rectangle)
}
pub fn improve_move_individual_houses(layout: &mut HouseLayout, mut rng: &mut StdRng) -> bool {
let mut improved = false;
let mut untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
while untried_houses.len() > 0 {
let house = untried_houses.pop().unwrap();
let house_index = layout.houses().iter().position(|x| *x == house).unwrap();
let move_rectangle = match get_valid_move_rectangle(&layout, house) {
Ok(move_rectangle) => move_rectangle,
Err(RectangleSearchError::Useless) => {
//let old_price = layout.price();
layout.remove_house(house_index);
//let new_price = layout.price();
//let price_diff = new_price as i64 - old_price as i64;
//eprintln!(" candidate is valid, price diff: {}.", price_diff);
//eprintln!("Removed a house (useless), diff {}", price_diff);
//eprintln!("Improved price: {}", new_price);
improved = true;
untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
continue;
}
_ => unreachable!()
};
// TODO: Not needed, can just store best
let mut new_candidates = Vec::new();
for new_y in move_rectangle.top..=move_rectangle.bottom {
for new_x in move_rectangle.left..=move_rectangle.right {
if layout.city.is_house_xy(new_x, new_y) && layout.city.get_price_xy(new_x, new_y) < layout.city.get_price(&house) {
new_candidates.push(House::new(new_x, new_y));
}
}
}
new_candidates.sort_by(|a, b| layout.city.get_price(&a).cmp(&layout.city.get_price(&b)));
if new_candidates.len() == 0 {
//eprintln!("Did not find candidate");
} else {
for (i, &candidate) in new_candidates.iter().enumerate() {
//eprint!("Found candidate {}...", i);
//let old_price = layout.price();
layout.remove_house(house_index);
layout.add_house(candidate);
assert!(layout.is_valid());
//let new_price = layout.price();
//let price_diff = new_price as i64 - old_price as i64;
//eprintln!(" candidate is valid, price diff: {}.", price_diff);
//eprintln!("Improved price: {}", new_price);
improved = true;
untried_houses = layout.houses().clone();
untried_houses.shuffle(&mut rng);
break;
}
}
}
improved
}
pub fn improve_merge_pairwise(layout: &mut HouseLayout) -> bool {
let mut improved = false;
loop {
// This here is a hack for being unable to modify the houses while looping through them.
// We instead go through the houses repeatedly and remember which pairs we have already
// tried by hashing their values because they can and do move throughout the layout Vec
// as it's being modified.
let mut checked = HashSet::new();
let mut loop_improved = false;
loop {
let mut merge = None;
'outer_houses: for i in 0..layout.houses().len() {
for j in i + 1..layout.houses().len() {
let house1 = layout.houses()[i];
let house2 = layout.houses()[j];
let x_dist = (house1.x as i32 - house2.x as i32).abs() as usize;
let y_dist = (house1.y as i32 - house2.y as i32).abs() as usize;
if x_dist > 4 * HOUSE_RANGE || y_dist > 4 * HOUSE_RANGE {
// Never close enough to merge
continue;
}
if checked.contains(&(house1, house2)) || checked.contains(&(house2, house1)) {
continue;
} else {
checked.insert((house1, house2));
}
match get_valid_move_rectangle_multiple(&layout, &vec! {house1, house2}) {
Ok(rect) => {
let mut cheapest = None;
for y in rect.top..=rect.bottom {
for x in rect.left..=rect.right {
if !layout.city.is_house_xy(x, y) { continue; }
let price = layout.city.get_price_xy(x, y);
match cheapest {
None => cheapest = Some((x, y, price)),
Some((_, _, cheapest_price)) if price < cheapest_price => cheapest = Some((x, y, price)),
_ => {}
};
}
}
if let Some((x, y, price)) = cheapest {
if price >= layout.city.get_price(&house1) + layout.city.get_price(&house2) {
// Merging not worth
//eprintln!("Merging not worth!");
} else {
merge = Some((i, j, House::new(x, y)));
break 'outer_houses;
}
}
}
Err(RectangleSearchError::Useless) => eprintln!("Found useless pair of houses, not solving!"),
Err(RectangleSearchError::Unsatisfiable) => {}
}
}
}
if let Some((i, j, house)) = merge {
let old_price = layout.price();
assert!(i < j);
layout.remove_house(j);
layout.remove_house(i);
layout.add_house(house);
assert!(layout.is_valid());
let new_price = layout.price();
let price_diff = new_price as i32 - old_price as i32;
eprintln!("Merged two houses, new price {}, diff {}", new_price, price_diff);
improved = true;
loop_improved = true;
} else {
break;
}
}
if !loop_improved {
break;
}
}
improved
}

21
src/population.rs

@ -0,0 +1,21 @@
use rand::Rng;
use crate::city::{SIZE, House, HouseLayout};
use rand::prelude::StdRng;
pub(crate) fn populate_random(layout: &mut HouseLayout, rng: &mut StdRng) {
loop {
loop {
let x = rng.gen_range(0..SIZE);
let y = rng.gen_range(0..SIZE);
let house = House::new(x, y);
if layout.city.is_house_xy(x, y) && !layout.is_covered(house) {
layout.add_house(house);
break;
}
}
if layout.is_valid() {
break;
}
}
}
Loading…
Cancel
Save