|
|
@ -1,13 +1,14 @@ |
|
|
|
use std::collections::HashSet; |
|
|
|
use rand::prelude::{SliceRandom, StdRng}; |
|
|
|
use crate::city::{Rectangle, HOUSE_RANGE, SIZE, House, HouseLayout}; |
|
|
|
use itertools::iproduct; |
|
|
|
|
|
|
|
pub enum RectangleSearchError { |
|
|
|
Useless, |
|
|
|
Unsatisfiable |
|
|
|
} |
|
|
|
|
|
|
|
pub fn get_valid_move_rectangle_multiple(layout: &HouseLayout, houses: &Vec<House>) -> Result<Rectangle, RectangleSearchError> { |
|
|
|
fn get_valid_move_rectangle_multiple(layout: &HouseLayout, houses: &Vec<House>) -> Result<Rectangle, RectangleSearchError> { |
|
|
|
// This is a generalization of get_valid_move_rectangle, it's basically the same thing,
|
|
|
|
// just with a dynamic rectangles_containing_count
|
|
|
|
|
|
|
@ -67,7 +68,7 @@ pub fn get_valid_move_rectangle_multiple(layout: &HouseLayout, houses: &Vec<Hous |
|
|
|
Ok(Rectangle { left, right, top, bottom }) |
|
|
|
} |
|
|
|
|
|
|
|
pub fn get_valid_move_rectangle(layout: &HouseLayout, house: House) -> Result<Rectangle, RectangleSearchError> { |
|
|
|
fn get_valid_move_rectangle(layout: &HouseLayout, house: House) -> Result<Rectangle, RectangleSearchError> { |
|
|
|
// We first establish a bounding box for an that has to be covered if the house is removed.
|
|
|
|
let mut covered_rect: Option<Rectangle> = None; |
|
|
|
|
|
|
@ -143,13 +144,13 @@ pub fn improve_move_individual_houses(layout: &mut HouseLayout, mut rng: &mut St |
|
|
|
let mut new_candidates = Vec::new(); |
|
|
|
for new_y in move_rectangle.top..=move_rectangle.bottom { |
|
|
|
for new_x in move_rectangle.left..=move_rectangle.right { |
|
|
|
if layout.city.is_house_xy(new_x, new_y) && layout.city.get_price_xy(new_x, new_y) < layout.city.get_price(&house) { |
|
|
|
if layout.city.is_house_xy(new_x, new_y) && layout.city.get_price_xy(new_x, new_y) < layout.city.get_price(house) { |
|
|
|
new_candidates.push(House::new(new_x, new_y)); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
new_candidates.sort_by(|a, b| layout.city.get_price(&a).cmp(&layout.city.get_price(&b))); |
|
|
|
new_candidates.sort_by(|a, b| layout.city.get_price(*a).cmp(&layout.city.get_price(*b))); |
|
|
|
if new_candidates.len() == 0 { |
|
|
|
//eprintln!("Did not find candidate");
|
|
|
|
} else { |
|
|
@ -222,7 +223,7 @@ pub fn improve_merge_pairwise(layout: &mut HouseLayout) -> bool { |
|
|
|
} |
|
|
|
} |
|
|
|
if let Some((x, y, price)) = cheapest { |
|
|
|
if price >= layout.city.get_price(&house1) + layout.city.get_price(&house2) { |
|
|
|
if price >= layout.city.get_price(house1) + layout.city.get_price(house2) { |
|
|
|
// Merging not worth
|
|
|
|
//eprintln!("Merging not worth!");
|
|
|
|
} else { |
|
|
@ -262,3 +263,158 @@ pub fn improve_merge_pairwise(layout: &mut HouseLayout) -> bool { |
|
|
|
|
|
|
|
improved |
|
|
|
} |
|
|
|
|
|
|
|
pub fn improve_move_houses_pairwise(layout: &mut HouseLayout) -> bool { |
|
|
|
// TODO: Implement layout move house to avoid changing indices
|
|
|
|
for i in 0..layout.houses().len() { |
|
|
|
for j in i + 1..layout.houses().len() { |
|
|
|
let house1 = layout.houses()[i]; |
|
|
|
let house2 = layout.houses()[j]; |
|
|
|
let x_dist = (house1.x as i32 - house2.x as i32).abs() as usize; |
|
|
|
let y_dist = (house1.y as i32 - house2.y as i32).abs() as usize; |
|
|
|
if x_dist > 2 * HOUSE_RANGE + 1 || y_dist > 2 * HOUSE_RANGE + 1 { |
|
|
|
// Not close enough to overlap or touch areas (can move on its own)
|
|
|
|
continue; |
|
|
|
} |
|
|
|
|
|
|
|
if let Some(distances) = get_dual_move_distances(&layout, i, j) { |
|
|
|
eprintln!("Houses {} {} move distances: L{} R{} T{} B{}", i, j, distances.left, distances.right, distances.up, distances.down); |
|
|
|
let mut best_move = None; |
|
|
|
|
|
|
|
let old_price = layout.city.get_price(house1) + layout.city.get_price(house2); |
|
|
|
|
|
|
|
let left_deltas = (1..distances.left).map(|x| (-(x as i32), 0)); |
|
|
|
let right_deltas = (1..distances.right).map(|x| (x as i32, 0)); |
|
|
|
let up_deltas = (1..distances.up).map(|x| (0, -(x as i32))); |
|
|
|
let down_deltas = (1..distances.down).map(|x| (0, x as i32)); |
|
|
|
let move_deltas = left_deltas.chain(right_deltas).chain(up_deltas).chain(down_deltas); |
|
|
|
|
|
|
|
for (x_delta, y_delta) in move_deltas { |
|
|
|
let new_house1 = House::new( |
|
|
|
(house1.x as i32 + x_delta) as usize, |
|
|
|
(house1.y as i32 + y_delta) as usize, |
|
|
|
); |
|
|
|
let new_house2 = House::new( |
|
|
|
(house2.x as i32 + x_delta) as usize, |
|
|
|
(house2.y as i32 + y_delta) as usize, |
|
|
|
); |
|
|
|
|
|
|
|
if !layout.city.is_house(new_house1) || !layout.city.is_house(new_house2) { |
|
|
|
continue; |
|
|
|
} |
|
|
|
|
|
|
|
let new_price = layout.city.get_price(new_house1) + layout.city.get_price(new_house2); |
|
|
|
eprintln!("Move x{} y{}, diff {} (price {}->{})", x_delta, y_delta, new_price as i32 - old_price as i32, old_price, new_price); |
|
|
|
|
|
|
|
if new_price < old_price { |
|
|
|
match best_move { |
|
|
|
None => best_move = Some((x_delta, y_delta, new_price)), |
|
|
|
Some((_, _, best_price)) if new_price < best_price => { |
|
|
|
best_move = Some((x_delta, y_delta, new_price)); |
|
|
|
} |
|
|
|
_ => {} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if let Some((x_delta, y_delta, best_price)) = best_move { |
|
|
|
eprintln!("Best move x{} y{}, diff {} (price {}->{})", x_delta, y_delta, best_price as i32 - old_price as i32, old_price, best_price); |
|
|
|
// TODO: IMPLEMENT MOVE
|
|
|
|
} else { |
|
|
|
eprintln!("No move worth it."); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
unimplemented!() |
|
|
|
} |
|
|
|
|
|
|
|
struct MoveDistances { |
|
|
|
left: usize, |
|
|
|
right: usize, |
|
|
|
up: usize, |
|
|
|
down: usize, |
|
|
|
} |
|
|
|
|
|
|
|
fn get_dual_move_distances(layout: &HouseLayout, house1_index: usize, house2_index: usize) -> Option<MoveDistances> { |
|
|
|
let house1 = layout.houses()[house1_index]; |
|
|
|
let house2 = layout.houses()[house2_index]; |
|
|
|
|
|
|
|
let rect1 = house1.range_rectangle(); |
|
|
|
let rect2 = house2.range_rectangle(); |
|
|
|
|
|
|
|
let top1 = rect1.top.min(rect2.top); |
|
|
|
let top2 = rect1.top.max(rect2.top); |
|
|
|
let bottom1 = rect1.bottom.min(rect2.bottom); |
|
|
|
let bottom2 = rect1.bottom.max(rect2.bottom); |
|
|
|
let left1 = rect1.left.min(rect2.left); |
|
|
|
let left2 = rect1.left.max(rect2.left); |
|
|
|
let right1 = rect1.right.min(rect2.right); |
|
|
|
let right2 = rect1.right.max(rect2.right); |
|
|
|
|
|
|
|
let left_rect = if house1.x <= house2.x { rect1 } else { rect2 }; |
|
|
|
let right_rect = if house1.x <= house2.x { rect2 } else { rect1 }; |
|
|
|
let top_rect = if house1.y <= house2.y { rect1 } else { rect2 }; |
|
|
|
let bottom_rect = if house1.y <= house2.y { rect2 } else { rect1 }; |
|
|
|
|
|
|
|
let margin_left = left1..left2; |
|
|
|
let shared_x = left2..=right1; |
|
|
|
let margin_right = right1 + 1..=right2; |
|
|
|
let margin_top = top1..top2; |
|
|
|
let shared_y = top2..=bottom1; |
|
|
|
let margin_bottom = bottom1 + 1..=bottom2; |
|
|
|
|
|
|
|
let mut top_distance = SIZE; |
|
|
|
let mut bottom_distance = SIZE; |
|
|
|
let mut right_distance = SIZE; |
|
|
|
let mut left_distance = SIZE; |
|
|
|
|
|
|
|
// We check the same tile twice if it's in both rectangles (and both shared_x and shared_y),
|
|
|
|
// this could be made more efficient by dividing the rectangles into 5 zones.
|
|
|
|
let rect1 = iproduct!(rect1.top..=rect1.bottom, rect1.left..=rect1.right); |
|
|
|
let rect2 = iproduct!(rect2.top..=rect2.bottom, rect2.left..=rect2.right); |
|
|
|
for (y, x) in rect1.chain(rect2) { |
|
|
|
let shared_both = shared_x.contains(&x) && shared_y.contains(&y); |
|
|
|
let min_cover_count = if shared_both { 2 } else { 1 }; |
|
|
|
if !layout.city.is_house_xy(x, y) && layout.cover_count_xy(x, y) != min_cover_count { |
|
|
|
continue; |
|
|
|
} |
|
|
|
|
|
|
|
if margin_left.contains(&x) { |
|
|
|
top_distance = top_distance.min(y - left_rect.top); |
|
|
|
bottom_distance = bottom_distance.min(left_rect.bottom - y); |
|
|
|
} else if shared_x.contains(&x) { |
|
|
|
top_distance = top_distance.min(y - left_rect.top.min(right_rect.top)); |
|
|
|
bottom_distance = bottom_distance.min(left_rect.bottom.max(right_rect.bottom) - y); |
|
|
|
} else if margin_right.contains(&x) { |
|
|
|
top_distance = top_distance.min(y - right_rect.top); |
|
|
|
bottom_distance = bottom_distance.min(right_rect.bottom - y); |
|
|
|
} else { |
|
|
|
unreachable!(); |
|
|
|
} |
|
|
|
|
|
|
|
if margin_top.contains(&y) { |
|
|
|
left_distance = left_distance.min(x - top_rect.left); |
|
|
|
right_distance = right_distance.min(top_rect.right - x); |
|
|
|
} else if shared_y.contains(&y) { |
|
|
|
left_distance = left_distance.min(x - bottom_rect.left.min(top_rect.left)); |
|
|
|
right_distance = right_distance.min(bottom_rect.right.max(top_rect.right) - x); |
|
|
|
} else if margin_bottom.contains(&y) { |
|
|
|
left_distance = left_distance.min(x - bottom_rect.left); |
|
|
|
right_distance = right_distance.min(bottom_rect.right - x); |
|
|
|
} else { |
|
|
|
unreachable!() |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// TODO: Handle properly
|
|
|
|
assert_ne!(top_distance, SIZE); |
|
|
|
|
|
|
|
Some(MoveDistances { |
|
|
|
left: left_distance, |
|
|
|
right: right_distance, |
|
|
|
up: top_distance, |
|
|
|
down: bottom_distance |
|
|
|
}) |
|
|
|
} |