SKSP_2022_strategicka_hra/server/bin/gen_hills

103 lines
3.6 KiB
Text
Raw Normal View History

2022-09-14 10:04:19 +02:00
#!/usr/bin/env python3
import argparse
import json
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=1, type=int, help="Random seed.")
parser.add_argument("--threshold", default=0.4, type=float, help="Higher threshold = less hills.")
parser.add_argument("--safezone", default=3.0, type=float, help="Size of hill-free area around home bases.")
parser.add_argument("--size", default=(30, 30), type=int, nargs=2, help="Width and height for team.")
parser.add_argument("--res", default=(10, 10), type=int, nargs=2, help="Higher res = more smaller hills. Must divide size.")
def main():
np.random.seed(args.seed)
# base noise profile
noise = generate_perlin_noise_2d(
args.size,
args.res,
tileable=(True, True),
)
# make it less likely for hills to be close to home bases
distance_decay_tiling = np.fromfunction(distance_decay, args.size, dtype=np.float32)
hills = np.where(noise - distance_decay_tiling > args.threshold, "x", ".")
2022-09-14 10:04:19 +02:00
rows = ["".join(row) for row in hills]
config = {
"width_per_team": args.size[0],
"height_per_team": args.size[1],
"hills": rows
}
print(json.dumps(config, indent=4))
def distance_decay(x, y):
# calculate distance from home base
dx = x - args.size[0] // 2
dy = y - args.size[1] // 2
distance = np.sqrt(dx*dx + dy*dy)
# use exponential decay
return np.exp(-distance / args.safezone)
2022-09-14 10:04:19 +02:00
# Source:
# https://github.com/pvigier/perlin-numpy/blob/master/perlin_numpy/perlin2d.py
def interpolant(t):
return t*t*t*(t*(t*6 - 15) + 10)
def generate_perlin_noise_2d(
shape, res, tileable=(False, False), interpolant=interpolant
):
"""Generate a 2D numpy array of perlin noise.
Args:
shape: The shape of the generated array (tuple of two ints).
This must be a multple of res.
res: The number of periods of noise to generate along each
axis (tuple of two ints). Note shape must be a multiple of
res.
tileable: If the noise should be tileable along each axis
(tuple of two bools). Defaults to (False, False).
interpolant: The interpolation function, defaults to
t*t*t*(t*(t*6 - 15) + 10).
Returns:
A numpy array of shape shape with the generated noise.
Raises:
ValueError: If shape is not a multiple of res.
"""
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = np.mgrid[0:res[0]:delta[0], 0:res[1]:delta[1]]\
.transpose(1, 2, 0) % 1
# Gradients
angles = 2*np.pi*np.random.rand(res[0]+1, res[1]+1)
gradients = np.dstack((np.cos(angles), np.sin(angles)))
if tileable[0]:
gradients[-1, :] = gradients[0, :]
if tileable[1]:
gradients[:, -1] = gradients[:, 0]
gradients = gradients.repeat(d[0], 0).repeat(d[1], 1)
g00 = gradients[:-d[0], :-d[1]]
g10 = gradients[d[0]:, :-d[1]]
g01 = gradients[:-d[0], d[1]:]
g11 = gradients[d[0]:, d[1]:]
# Ramps
n00 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1])) * g00, 2)
n10 = np.sum(np.dstack((grid[:, :, 0]-1, grid[:, :, 1])) * g10, 2)
n01 = np.sum(np.dstack((grid[:, :, 0], grid[:, :, 1]-1)) * g01, 2)
n11 = np.sum(np.dstack((grid[:, :, 0]-1, grid[:, :, 1]-1)) * g11, 2)
# Interpolation
t = interpolant(grid)
n0 = n00*(1-t[:, :, 0]) + t[:, :, 0]*n10
n1 = n01*(1-t[:, :, 0]) + t[:, :, 0]*n11
return np.sqrt(2)*((1-t[:, :, 1])*n0 + t[:, :, 1]*n1)
if __name__ == '__main__':
args = parser.parse_args([] if "__file__" not in globals() else None)
main()