sksp2024-mcu/ucw-stm32lib/lib/modbus.c

767 lines
20 KiB
C

/*
* Generic MODBUS Library for STM32
*
* (c) 2019--2023 Martin Mareš <mj@ucw.cz>
*/
#include "util.h"
#include "modbus.h"
#include "modbus-proto.h"
#include <stddef.h>
#include <string.h>
#include <libopencm3/cm3/cortex.h>
#include <libopencm3/cm3/nvic.h>
#include <libopencm3/stm32/gpio.h>
#include <libopencm3/stm32/usart.h>
#include <libopencm3/stm32/timer.h>
/*** Configuration ***/
// You should set the following parameters in config.h
// USART (pins are expected to be configured by the caller)
// #define MODBUS_USART USART2
// #define MODBUS_NVIC_USART_IRQ NVIC_USART2_IRQ
// #define MODBUS_USART_ISR usart2_isr
// GPIO pin for transmitter enable (pins is expected to be configured by the caller)
// #define MODBUS_TXEN_GPIO_PORT GPIOA
// #define MODBUS_TXEN_GPIO_PIN GPIO1
// Timer
// #define MODBUS_TIMER TIM2
// #define MODBUS_NVIC_TIMER_IRQ NVIC_TIM2_IRQ
// #define MODBUS_TIMER_ISR tim2_isr
// Slave address we are responding at
// #define MODBUS_OUR_ADDRESS 42
// Baud rate
#ifndef MODBUS_BAUD_RATE
#define MODBUS_BAUD_RATE 19200
#endif
// CPU clock frequency
// #define CPU_CLOCK_MHZ 72
// Receive buffer size (standard specifies 256 bytes, you can make it shorter if necessary)
#ifndef MODBUS_RX_BUFSIZE
#define MODBUS_RX_BUFSIZE 256
#endif
// Transmit buffer size (standard specifies 256 bytes, you can make it shorter if necessary)
#ifndef MODBUS_TX_BUFSIZE
#define MODBUS_TX_BUFSIZE 256
#endif
// Receive timeout in microseconds
#ifndef MODBUS_RX_TIMEOUT
#if MODBUS_BAUD_RATE <= 19200
// For low baud rates, the standard specifies timeout of 1.5 character times
// (1 character = start bit + 8 data bits + parity bit + stop bit = 11 bits)
#define MODBUS_RX_TIMEOUT (1000000*11*3/2/MODBUS_BAUD_RATE)
#else
// For high rates, the timeout is fixed to 750 μs
#define MODBUS_RX_TIMEOUT 750
#endif
#endif
// Inter-frame gap in microseconds
#ifndef MODBUS_RX_GAP
#if MODBUS_BAUD_RATE <= 19200
// For low baud rates, the standard specifies 3.5 character times
#define MODBUS_RX_GAP (1000000*11*7/2/MODBUS_BAUD_RATE)
#else
// For high rates, the gap is fixed to 1750 μs
#define MODBUS_RX_GAP 1750
#endif
#endif
// Debugging
// #define MODBUS_DEBUG
// #define MODBUS_DEBUG_ISR
#ifdef MODBUS_DEBUG
#define DEBUG debug_printf
#else
#define DEBUG(xxx, ...) do { } while (0)
#endif
#ifdef MODBUS_DEBUG_ISR
#define DEBUG_ISR(c) debug_putc(c)
#else
#define DEBUG_ISR(c) do { } while (0)
#endif
/*** State ***/
enum mb_state {
STATE_RX,
STATE_RX_DONE,
STATE_PROCESSING,
STATE_GAP,
STATE_TX,
STATE_TX_LAST,
STATE_TX_DONE,
};
static byte rx_buf[MODBUS_RX_BUFSIZE];
static u16 rx_size;
static byte rx_bad;
static byte state; // STATE_xxx
static byte *rx_frame;
static byte *rx_frame_end;
static byte tx_buf[MODBUS_TX_BUFSIZE];
static u16 tx_size;
static u16 tx_pos;
static byte pending_error;
static bool check_frame(void);
static void process_frame(void);
/*** Low-level layer ***/
static void rx_init(void)
{
DEBUG_ISR('<');
state = STATE_RX;
rx_size = 0;
rx_bad = 0;
usart_set_mode(MODBUS_USART, USART_MODE_RX);
usart_enable_rx_interrupt(MODBUS_USART);
modbus_ready_hook();
}
static void rx_done(void)
{
DEBUG_ISR('>');
state = STATE_RX_DONE;
usart_disable_rx_interrupt(MODBUS_USART);
}
static void tx_gap_init(void)
{
timer_set_period(MODBUS_TIMER, (MODBUS_RX_GAP > MODBUS_RX_TIMEOUT ? MODBUS_RX_GAP - MODBUS_RX_TIMEOUT : 1));
timer_generate_event(MODBUS_TIMER, TIM_EGR_UG);
timer_enable_counter(MODBUS_TIMER);
}
static void tx_init(void)
{
DEBUG_ISR('[');
state = STATE_TX;
tx_pos = 0;
gpio_set(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
usart_set_mode(MODBUS_USART, USART_MODE_TX);
usart_enable_tx_interrupt(MODBUS_USART);
}
static void tx_done(void)
{
state = STATE_TX_DONE;
// usart_disable_tx_interrupt(MODBUS_USART); // Already done by irq handler
gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
}
void modbus_init(void)
{
DEBUG("MODBUS: Init\n");
timer_set_prescaler(MODBUS_TIMER, CPU_CLOCK_MHZ-1); // 1 tick = 1 μs
timer_set_mode(MODBUS_TIMER, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_DOWN);
timer_update_on_overflow(MODBUS_TIMER);
timer_disable_preload(MODBUS_TIMER);
timer_one_shot_mode(MODBUS_TIMER);
timer_enable_irq(MODBUS_TIMER, TIM_DIER_UIE);
nvic_enable_irq(MODBUS_NVIC_TIMER_IRQ);
gpio_clear(MODBUS_TXEN_GPIO_PORT, MODBUS_TXEN_GPIO_PIN);
usart_set_baudrate(MODBUS_USART, MODBUS_BAUD_RATE);
usart_set_databits(MODBUS_USART, 9);
usart_set_stopbits(MODBUS_USART, USART_STOPBITS_1);
usart_set_parity(MODBUS_USART, USART_PARITY_EVEN);
usart_set_flow_control(MODBUS_USART, USART_FLOWCONTROL_NONE);
rx_init();
nvic_enable_irq(MODBUS_NVIC_USART_IRQ);
usart_enable(MODBUS_USART);
}
void MODBUS_USART_ISR(void)
{
u32 status = USART_SR(MODBUS_USART);
if (status & USART_SR_RXNE) {
uint ch = usart_recv(MODBUS_USART);
if (state == STATE_RX) {
if (status & (USART_SR_FE | USART_SR_ORE | USART_SR_NE)) {
DEBUG_ISR('!');
rx_bad = 1;
} else if (rx_size < MODBUS_RX_BUFSIZE) {
DEBUG_ISR('.');
if (!rx_size)
modbus_frame_start_hook();
rx_buf[rx_size++] = ch;
} else {
// Frame too long
DEBUG_ISR('#');
rx_bad = 2;
}
timer_set_period(MODBUS_TIMER, MODBUS_RX_TIMEOUT);
timer_generate_event(MODBUS_TIMER, TIM_EGR_UG);
timer_enable_counter(MODBUS_TIMER);
}
}
if (state == STATE_TX) {
if (status & USART_SR_TXE) {
if (tx_pos < tx_size) {
usart_send(MODBUS_USART, tx_buf[tx_pos++]);
DEBUG_ISR(':');
} else {
// The transmitter is double-buffered, so at this moment, it is transmitting
// the last byte of the frame. Wait until transfer is completed.
usart_disable_tx_interrupt(MODBUS_USART);
USART_CR1(MODBUS_USART) |= USART_CR1_TCIE;
state = STATE_TX_LAST;
DEBUG_ISR(']');
}
}
} else if (state == STATE_TX_LAST) {
if (status & USART_SR_TC) {
// Transfer of the last byte is complete. Release the bus.
USART_CR1(MODBUS_USART) &= ~USART_CR1_TCIE;
tx_done();
rx_init();
}
}
}
void MODBUS_TIMER_ISR(void)
{
if (TIM_SR(MODBUS_TIMER) & TIM_SR_UIF) {
TIM_SR(MODBUS_TIMER) &= ~TIM_SR_UIF;
if (state == STATE_RX)
rx_done();
else if (state == STATE_GAP)
tx_init();
}
}
void modbus_loop(void)
{
if (state != STATE_RX_DONE)
return;
state = STATE_PROCESSING;
if (!check_frame()) {
rx_init();
return;
}
DEBUG("MODBUS: < dest=%02x func=%02x len=%u\n", rx_buf[0], rx_buf[1], rx_size);
if (rx_buf[0] == MODBUS_OUR_ADDRESS) {
// Frame addressed to us: process and reply
tx_gap_init();
process_frame();
DEBUG("MODBUS: > status=%02x len=%u\n", tx_buf[1], tx_size);
CM_ATOMIC_BLOCK() {
if (TIM_CR1(MODBUS_TIMER) & TIM_CR1_CEN) {
// The timer is still running, so let it handle the start of transmission.
// Even if it expires just now, the interrupt is deferred.
state = STATE_GAP;
}
}
if (state == STATE_PROCESSING) {
// Interrupt already expired, so fire up transmission from here.
tx_init();
}
} else if (rx_buf[0] == 0x00) {
// Broadcast frame: process, but do not reply
process_frame();
rx_init();
} else {
// Somebody else's frame: discard
rx_init();
}
}
/** CRC ***/
static const byte crc_hi[] = {
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40, 0x00, 0xc1, 0x81, 0x40,
0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0, 0x80, 0x41, 0x00, 0xc1,
0x81, 0x40, 0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41,
0x00, 0xc1, 0x81, 0x40, 0x01, 0xc0, 0x80, 0x41, 0x01, 0xc0,
0x80, 0x41, 0x00, 0xc1, 0x81, 0x40
};
static const byte crc_lo[] = {
0x00, 0xc0, 0xc1, 0x01, 0xc3, 0x03, 0x02, 0xc2, 0xc6, 0x06,
0x07, 0xc7, 0x05, 0xc5, 0xc4, 0x04, 0xcc, 0x0c, 0x0d, 0xcd,
0x0f, 0xcf, 0xce, 0x0e, 0x0a, 0xca, 0xcb, 0x0b, 0xc9, 0x09,
0x08, 0xc8, 0xd8, 0x18, 0x19, 0xd9, 0x1b, 0xdb, 0xda, 0x1a,
0x1e, 0xde, 0xdf, 0x1f, 0xdd, 0x1d, 0x1c, 0xdc, 0x14, 0xd4,
0xd5, 0x15, 0xd7, 0x17, 0x16, 0xd6, 0xd2, 0x12, 0x13, 0xd3,
0x11, 0xd1, 0xd0, 0x10, 0xf0, 0x30, 0x31, 0xf1, 0x33, 0xf3,
0xf2, 0x32, 0x36, 0xf6, 0xf7, 0x37, 0xf5, 0x35, 0x34, 0xf4,
0x3c, 0xfc, 0xfd, 0x3d, 0xff, 0x3f, 0x3e, 0xfe, 0xfa, 0x3a,
0x3b, 0xfb, 0x39, 0xf9, 0xf8, 0x38, 0x28, 0xe8, 0xe9, 0x29,
0xeb, 0x2b, 0x2a, 0xea, 0xee, 0x2e, 0x2f, 0xef, 0x2d, 0xed,
0xec, 0x2c, 0xe4, 0x24, 0x25, 0xe5, 0x27, 0xe7, 0xe6, 0x26,
0x22, 0xe2, 0xe3, 0x23, 0xe1, 0x21, 0x20, 0xe0, 0xa0, 0x60,
0x61, 0xa1, 0x63, 0xa3, 0xa2, 0x62, 0x66, 0xa6, 0xa7, 0x67,
0xa5, 0x65, 0x64, 0xa4, 0x6c, 0xac, 0xad, 0x6d, 0xaf, 0x6f,
0x6e, 0xae, 0xaa, 0x6a, 0x6b, 0xab, 0x69, 0xa9, 0xa8, 0x68,
0x78, 0xb8, 0xb9, 0x79, 0xbb, 0x7b, 0x7a, 0xba, 0xbe, 0x7e,
0x7f, 0xbf, 0x7d, 0xbd, 0xbc, 0x7c, 0xb4, 0x74, 0x75, 0xb5,
0x77, 0xb7, 0xb6, 0x76, 0x72, 0xb2, 0xb3, 0x73, 0xb1, 0x71,
0x70, 0xb0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92,
0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9c, 0x5c,
0x5d, 0x9d, 0x5f, 0x9f, 0x9e, 0x5e, 0x5a, 0x9a, 0x9b, 0x5b,
0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4b, 0x8b,
0x8a, 0x4a, 0x4e, 0x8e, 0x8f, 0x4f, 0x8d, 0x4d, 0x4c, 0x8c,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42,
0x43, 0x83, 0x41, 0x81, 0x80, 0x40
};
static u16 crc16(byte *buf, u16 len)
{
byte hi = 0xff, lo = 0xff;
while (len--) {
byte i = hi ^ *buf++;
hi = lo ^ crc_hi[i];
lo = crc_lo[i];
}
return (hi << 8 | lo);
}
/*** High-level layer ***/
static bool check_frame(void)
{
if (rx_bad) {
// FIXME: Error counters?
DEBUG("MODBUS: RX bad\n");
return false;
}
if (rx_size < 4) {
// FIXME: Error counters?
DEBUG("MODBUS: RX undersize\n");
return false;
}
u16 crc = crc16(rx_buf, rx_size - 2);
u16 rx_crc = (rx_buf[rx_size-2] << 8) | rx_buf[rx_size-1];
if (crc != rx_crc) {
// FIXME: Error counters?
DEBUG("MODBUS: Bad CRC\n");
return false;
}
rx_frame = rx_buf + 1;
rx_frame_end = rx_frame + rx_size - 2;
return true;
}
static uint read_remains(void)
{
return rx_frame_end - rx_frame;
}
static byte read_byte(void)
{
return *rx_frame++;
}
static u16 read_u16(void)
{
byte hi = *rx_frame++;
byte lo = *rx_frame++;
return (hi << 8) | lo;
}
static void write_byte(byte v)
{
tx_buf[tx_size++] = v;
}
static void write_u16(u16 v)
{
write_byte(v >> 8);
write_byte(v);
}
static bool body_fits(uint body_len)
{
// body_len excludes slave address, function code, and CRC
return (2 + body_len + 2 <= MODBUS_TX_BUFSIZE);
}
static void report_error(byte code)
{
// Discard the partially constructed body of the reply and rewrite the header
tx_buf[1] |= 0x80;
tx_buf[2] = code;
tx_size = 3;
}
static void func_read_bits(bool coils)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
uint bytes = (count+7) / 8;
if (!body_fits(1 + bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!(coils ? modbus_check_coil : modbus_check_discrete_input)(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
write_byte(bytes);
for (u16 i = 0; i < bytes; i++) {
byte b = 0;
for (byte j = 0; j < 8 && 8*i + j < count; j++) {
uint addr = start + 8*i + j;
if ((coils ? modbus_get_coil : modbus_get_discrete_input)(addr))
b |= 1 << j;
}
write_byte(b);
}
}
static void func_read_registers(byte holding)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
uint bytes = 2*count;
if (!body_fits(1 + bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!(holding ? modbus_check_holding_register : modbus_check_input_register)(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
// FIXME: Reporting of slave failures?
write_byte(bytes);
for (u16 i = 0; i < count; i++)
write_u16((holding ? modbus_get_holding_register : modbus_get_input_register)(start + i));
}
static void func_write_single_coil(void)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 value = read_u16();
if (!modbus_check_coil(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
if (value != 0x0000 && value != 0xff00)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
modbus_set_coil(addr, value);
write_u16(addr);
write_u16(value);
}
static void func_write_single_register(void)
{
if (read_remains() < 4)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 value = read_u16();
if (!modbus_check_holding_register(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
modbus_set_holding_register(addr, value);
write_u16(addr);
write_u16(value);
}
static void func_write_multiple_coils(void)
{
if (read_remains() < 5)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
byte bytes = read_byte();
if (read_remains() < bytes || bytes != (count+7) / 8)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!modbus_check_coil(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < count; i++)
modbus_set_coil(start + i, rx_frame[i/8] & (1U << (i%8)));
write_u16(start);
write_u16(count);
}
static void func_write_multiple_registers(void)
{
if (read_remains() < 5)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 start = read_u16();
u16 count = read_u16();
byte bytes = read_byte();
if (read_remains() < bytes || bytes != 2*count)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < count; i++)
if (!modbus_check_holding_register(start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < count; i++)
modbus_set_holding_register(start + i, read_u16());
write_u16(start);
write_u16(count);
}
static void func_mask_write_register(void)
{
if (read_remains() < 6)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 addr = read_u16();
u16 and_mask = read_u16();
u16 or_mask = read_u16();
if (!modbus_check_holding_register(addr))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
u16 reg = modbus_get_holding_register(addr);
reg = (reg & and_mask) | (or_mask & ~and_mask);
modbus_set_holding_register(addr, reg);
write_u16(addr);
write_u16(and_mask);
write_u16(or_mask);
}
static void func_read_write_multiple_registers(void)
{
if (read_remains() < 9)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
u16 read_start = read_u16();
u16 read_count = read_u16();
u16 write_start = read_u16();
u16 write_count = read_u16();
byte write_bytes = read_byte();
if (read_remains() < write_bytes || write_bytes != 2*write_count)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < read_count; i++)
if (!modbus_check_holding_register(read_start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
for (u16 i = 0; i < write_count; i++)
if (!modbus_check_holding_register(write_start + i))
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
byte read_bytes = 2*write_count;
if (!body_fits(1 + read_bytes))
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
for (u16 i = 0; i < write_count; i++)
modbus_set_holding_register(write_start + i, read_u16());
write_byte(read_bytes);
for (u16 i = 0; i < read_count; i++)
modbus_get_holding_register(read_start + i);
}
static void func_encapsulated_interface_transport(void)
{
if (read_remains() < 3 ||
read_byte() != MODBUS_EIT_READ_DEVICE_IDENT)
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
byte action = read_byte();
byte id = read_byte();
byte range_min, range_max;
switch (action) {
case 1:
// Streaming access to basic identification
range_min = MODBUS_ID_VENDOR_NAME;
range_max = MODBUS_ID_MAJOR_MINOR_REVISION;
break;
case 2:
// Streaming access to regular identification
range_min = MODBUS_ID_VENDOR_URL;
range_max = MODBUS_ID_USER_APP_NAME;
break;
case 4:
// Individual access
if (id >= MODBUS_ID_MAX || !modbus_id_strings[id])
return report_error(MODBUS_ERR_ILLEGAL_DATA_ADDRESS);
range_min = range_max = id;
break;
default:
return report_error(MODBUS_ERR_ILLEGAL_DATA_VALUE);
}
if (action != 4) {
if (id < range_min || id > range_max)
id = range_min;
}
write_byte(0x0e); // Repeat a part of the request
write_byte(action);
// Conformity level
if (modbus_id_strings[MODBUS_ID_VENDOR_URL] ||
modbus_id_strings[MODBUS_ID_PRODUCT_NAME] ||
modbus_id_strings[MODBUS_ID_USER_APP_NAME])
write_byte(0x82); // Regular identification, both stream and individual access supported
else
write_byte(0x81); // Basic identification only
u16 more_follows_at = tx_size;
write_byte(0); // More follows: so far not
write_byte(0); // Next object ID: so far none
write_byte(0); // Number of objects
for (id = range_min; id <= range_max; id++) {
if (modbus_id_strings[id]) {
byte len = strlen(modbus_id_strings[id]);
byte remains = MODBUS_TX_BUFSIZE - 4 - tx_size; // 2 for CRC, 2 for object header
if (len > remains) {
// If it is the only object, cut it
if (!tx_buf[more_follows_at + 2])
len = remains;
else {
// More follows, report the next ID
tx_buf[more_follows_at] = 0xff;
tx_buf[more_follows_at + 1] = id;
break;
}
}
tx_buf[more_follows_at + 2] ++;
write_byte(id);
write_byte(len);
memcpy(tx_buf + tx_size, modbus_id_strings[id], len);
tx_size += len;
}
}
}
static void process_frame(void)
{
byte func = read_byte();
// Prepare reply frame
tx_buf[0] = MODBUS_OUR_ADDRESS;
tx_buf[1] = rx_buf[1];
tx_size = 2;
pending_error = 0;
switch (func) {
case MODBUS_FUNC_READ_COILS:
func_read_bits(true);
break;
case MODBUS_FUNC_READ_DISCRETE_INPUTS:
func_read_bits(false);
break;
case MODBUS_FUNC_READ_HOLDING_REGISTERS:
func_read_registers(true);
break;
case MODBUS_FUNC_READ_INPUT_REGISTERS:
func_read_registers(false);
break;
case MODBUS_FUNC_WRITE_SINGLE_COIL:
func_write_single_coil();
break;
case MODBUS_FUNC_WRITE_SINGLE_REGISTER:
func_write_single_register();
break;
case MODBUS_FUNC_WRITE_MULTIPLE_COILS:
func_write_multiple_coils();
break;
case MODBUS_FUNC_WRITE_MULTIPLE_REGISTERS:
func_write_multiple_registers();
break;
case MODBUS_FUNC_MASK_WRITE_REGISTER:
func_mask_write_register();
break;
case MODBUS_FUNC_READ_WRITE_MULTIPLE_REGISTERS:
func_read_write_multiple_registers();
break;
case MODBUS_FUNC_ENCAPSULATED_INTERFACE_TRANSPORT:
func_encapsulated_interface_transport();
break;
default:
report_error(MODBUS_ERR_ILLEGAL_FUNCTION);
}
// Is there a deferred error pending?
if (pending_error)
report_error(pending_error);
// Finish reply frame
write_u16(crc16(tx_buf, tx_size));
}
void modbus_slave_error(void)
{
pending_error = MODBUS_ERR_SLAVE_DEVICE_FAILURE;
}
bool modbus_is_idle(void)
{
return state == STATE_RX && !rx_size;
}